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Abstract

The main aim of the present work is to investigate the dynamic analysis of circular cable suspended
roofs which are the most common forms of suspended roofs using the frequency domain method. Although
frequency domain analysis is used basically for lincar systems, it may be used to analyze cable suspended
roofs for which, wind is considercd as the fundamental dynamic faclor affecting in these structures. This is
due to the fact that the fluctuating wind speed, except for sites in mountainous areas, may be neglected
comparing with the mean wind speed.

Many circular cable roofs have been analyzed using a computer program constructed by the second
author based upon the frequency domain analysis. The results were used in making non-dimensional
grophs. Thesc graphs were used to investigate the factors that afTeet the natura) frequencies of eircular

cable suspended roofs.
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Lintroduction:

Cable structures are one of the two
catcgories of tension structures, which
both struclurcs  and

include cable

membrane  structures. In  tension

structures, the main load-carrying
members transmit the applied loads to
the foundations or other supporting
clemenis by direct tensile stresses
without {lexurc or compression [1].

The development of high tensile steel
cables has made it possible for the
designers to transmit large axial forces in
tension at a relatively low cost and so,
cable suspended roof is the cconomic
solution to cover larpe open areas
without interior colummns. They have
been used to cover different types of
buildings such as stadiums and sport
halls,

rescrvoirs, concert hall, cooling towers,

swimming pools and water
hangars, warechouses and facleries.

Cable suspended roofs must be
designed not only for static loads but
also for dynamic loads. The failure, of
the 853 m Tacoma Narrows bridge in
1940,

oscillations,

because  of  acrodynamic
of 4l

m.p.h[2],showed that it was not adequatc

constant  wind
to design structures for static stability
only[3].

Circular roofs in plan may be radial,

with tension ring, or of intersecting
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cables/cable beams. Generally, behavior
of cable roofs is softening nonlinear.
Also, they are lighter and more flexible
than other forms of struclures and, as a
result, they arc morc resistant to
carthquakes and more sensitive to wind
than conventional structures.
A complete dynamic analysis includes:
1) A frequency analysis;
2) Establishment and formulation of the
dynamic loading;
3) Estimation and formulation of
the structural damping; and
4) A dynamic analysis.

The

limited 1o the analysis of linear-behavior

frequency domain method is

structures. It is also, practically, applied
to some nonlincar behavior, such as
cable roofs taking only the nonlincar
response duc to the mean wind speed
component inlo account and not for the
casc where there is no load on the
structure. Apart from the assumptions

with statistical

respect 1o the

characteristics of wind, the main
assumption made in order to make the
method possible is that the amplitudes of
the fluctuating component of wind are
sulliciently small compared to the mean
wind speed and can be ignored.
Generally, this assumption is justified
cxcept for siles in mountainous areas.
This method is based on the speciral

density function that cnables the use of
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closed-form solutions, of the random
loading. So, the accuracy of analysis will
vary with the type of speciral density
function used and 1 may be advisable to
consiruel spectral densily functions, for
important structures, [rom recordings at
site, concerned, I'requepcy  domain
melhod undcrestimales the response in
the cablc roofs as they are sollening
structures.  As cable syslems are
nonlinear structures, both stiffness and
frequency vary with he amplitude of
As a both

frequencies and damping will also vary.

response. result natural

For this reason, the closed-form
sotulions 10 obtain [requencies are no
longer valid aud an ileralive process is
needed. During the analysis, structural
damping is assumed 1o Dbe conslant
because of lack of information, and
because Lhe values given in the codes of
practice tend to be conservative,

2- Freqilency Domain Analysis

The cigenvalue equation may Dbe

wrilten in general matrix notation as:

K¢-w'Mg=0 (1-a)

Or K¢-AMg=0 (1-)
Where:

K =the tangent stiffness matrix al the
static equilibrium position,

M =the mass matrix, which is diagonal

since masses arc fjumped al nodes,

¢ =1he mode-shape malrix, and

w’ = A= NxN =corresponding natural
frequencies.

The determination of cigenvalues,w?, is
of fundamental importance 1o the
frequency domain method of analysis, in
which the distribulion of energy of
random forces such as wind are given as
function of their frequency contenl in
terms of power spectra.

Structural  damping is usually not
inciuded when one is formulating the
eigenvalue problenm, as it increases the
numerical effort considerably and has
only a second effect on the calculated

{requencies.

In the jlerative method, the eigenvalues
w’and eigenveclors ¢ arc determined

by optimizing an assumed mode-shape

veelor lhrough an ilerative procedure on

cither:
w'¢d=M"'K¢ (2)
Or _?_’2_ =K 'M¢ 3)
[

Iterations on Egn (2) will cause the

assumed  eigenveclor 1o couverge
fowards the mode corresponding lo the
highest eigenvecltor and hence the
highest frequency; ilerations on Eqn (3)
will cause the assumed eigenvector o
converge  lowards the eigenveclor
corresponding lo the fowest frequency.

Eqn (2) involves the inversion of the
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mass matrix M, which when the matrix
is diagonal is achieved by simply
inverting cach of the clements on the
time to be inverted. This problem can be
avoidcd by

calculating the lowest

eigenvalue and cigenvector as follows:
Let B4, =la 1-M"k]g, @
Where: o =constant larger than the
highest cigenvalue;

I =the unit matrix; and

B = square mauix having the

same order of matrices M and K.
From Eqn (2) it follows that:

M™'Kg =}, (5)
Substituting of the expression for
M™'K¢ given in Eqn (5) into Eqn (4)
yields:

B, =l -02] 19, =[x -0?]4, ©
Assuming an initial vector ¢, , iteration of
Eqn (6) will yield the highest value of

[a —a)f] and hence the lowest possible
value of w? . Thus

w‘z - a)f
g =6

Iteration algorilhm based on Eqs (2) and (6) will

(7

yield (he highest and lowest natural frequencics
and the comesponding mode-shape for any
structure.

The Raleigh quotient

Pre-multiplication of each term of Eqn

(1-a) by ¢ yield:
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$ Kp-w'p"Mp=0 8)
Hence = T?@ (9)
¢ Mg

The expression for @’ given by Eqn (9)
is called Rayleigh quotient. It has the
property that for even approximately
correct values of eigenvectors or mode-
shapc vectors the wvalues for the
frequencies arc reasonably correct. This
can be scen simply by pre-multiplying

each term in Eqn (8) by Y. This yield:
4 Kp =0 Mg (10

Which states that the maxitmum strain

energy (%¢"K¢ }is equal to the

maximum kinetic energy (%wlqér M)

due 1o the mode shape vector ¢ .

2.1 Mass, damping and stiffness

matrices

2.1.1 Mass properties

Mass matrix of cable element may be
cxpressed in onc of the following:

1) Lumped-mass matrix

Assuming that the entire mass of
a structure is concentrated at the
points at which the translational
displacements are defined, the
lumped mass matrix for a cable

element is given by:



Mansoura Engineering Journal, (MEJ), Vol. 31, No. I, March 2000.

1 0 0 0 0 0]
01 0000
e RS K
000010
000000

Where m is the mass per unit length
of the cable element.

2} Consisteni-muass malrix

2 0 0 1 0 0]
0200 1 0
mbE1G 0 2 0 01
M, = — {2
[‘lﬁloozuo{)
01 00 2 0
001 00 2

Lumped-m-ass system needs cffort
than consisteni-mass sysicm {or two
reasons:

i) Lumped-mass inalrix is diagonal.
it) Rotational degrees of reedom can
be climnated from a lumped-mass
analysis, whercas all rotational and
transtational degrees of (icedom must
be included in the consistent-inass

2.1.2 Dnping miadrix

Damping matrix is expressed as:

[C]=26w[t] (13)

Thus, the damping matrix will only be
diagonal if (he ass malrix is also
diagonal.

Eqn (13} implies that the damping lorces
at different points in a structure are
proportional to the distribution of mass

and that the damping ratios decrease and

arec very smalt in the higher modes of

vibration.

2.1.3 Stiffness matrix

The stiffuess matrix of pin-jointed
pretensioned link is given by:

T T
L - - [
[K]:FA 7,| GG :- Go; +_T9_)
Ln' —GG GG LIJ _!
..................... (14)
Where [ is a unit malrix of

dimension (3 x 3), and
G={ m n} Wherel, m and n are
the directlion cosines ol the member,

2.2 Reduction of NDQI*

When the mass of a slruclure is

assumed to be concenlraled at the nodes,
it is usual to consider only the inertia
due to transnational movements and fo
tgnore that due to rotation, This assumes
that the lumped masses are concentraled
as poinl masses with radit of gyration
cqual 1o zero. thus in the case of
[lexible struclures, such as cable roofs,
where tlic joinls rolate, the clements on
the feading diagonal of the mass matrix
corresponding (o the rotational degrees
of freedom will be zero. In such case,
the mass aleix can nol be inverled.
Therefore the clements related to the
rotttion need Lo be eliminated from the
stiffhess  matrix.  Condensation  or
reduction of lhe stiffness matrix may
also be desirable to reduce the overall
degree of freedom, of structures with a
very large number of DOT in order to

reduce the numerical problem.

C. 17
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Three  condensation methods  are

mentioned below:

2.2.1 Static condensation method

/14,5, 06,and 7]

Stiflness equation of any structure
may be wrilten using partition of
matrices as:

(Kal [Ka] o

)l bl

Wlere {O‘}aml {x}m'e the displacemen

veclors corresponding o Jand x
degrecs ol freedom, respecliveiy. where
@ are the secondary coordinales o be
condensed and x arc the primary
coordinates {remaining coordinales).
Carrying oul Gauss-Jordan eliminalion,
Eqn (15) miay be writlen as lollows:
i1yl
o] [R] |1 e

It should be noled that in Egn (15), it is

(16)

assumed that at the dependent degrees of
freedom @, the exterpal forces are zero.
Eqn (10) is equivalent to boil:
0=Tx
Kx=P

a7
(18)

Where 7 is the transformation matrix

And

given by?

[F]= Ko ' [Ka] (19)
In Eqgn (18), that shows the relationship
between the displacement vector x and

the force vector P, K ( the reduced

stiffness matrix )and may be expressed
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by the following transformation of the
system malrix:

K=1"KT

Where 7T = ﬁ :i

Similarly, the reduced mass and

(20)

21)

damping matrices will be expressed as:
M=T7"MT (22)
C=r'cr (23)
Eqn (17}, which expresses the
refatiouship between displacement
veclors x and ¢, may also be rewrillen,
(o caleulute the modal shape matrix of

the system, as:
o)

v
() [fﬂ b

2.2.2 Dyruniic cordensation method

|8, 9, aud 10}
Equation (15) will be dynamically

b= (24)

extended and resvritlen as:

[Km ]‘ o] [Mou ] [Ka« ]“ o, [Mah

[K,o]- 0! [M,,] [K_r.(l—w,z[ﬂffj lﬁ]}!

(25)

Where /is the approximation of the

i th eigenvalue which was calculated in
ihe preceding step of the process. To
start the process an approximate or zero

value is taken for the first

eigenvaluew; . After carrying out a

Gauss-Jordan  climination  of  the

\

{0

{0

|



Mansoura Engineering Journal, (MEJ), Vol. 31, No. 1, March 2006.

unknown rotations&, Lqu (25) will be

rewrillen as:

bl e

Where: D, =the reduced dynamic

equalion and expressed as:

Df = Ru ""(,()'2 .‘i?(l (2?)

The reduced mass and damping matrices

are expressed respccelively as:

M,=T"MT (28)
C =1'Cr, (29)
Where, ftransformation matrix 7, s

caleulated using Lq. (17).
Using Eqn (27), the reduced stifTiess

matrix will be expressed as:

K =0 1r0'M, (30)
Finally, according to Eqgs (26) and (30),
(he reduced eigen-problem is:

(31)

This cquation is sotved to obtain an

[K,-@! M Jx=0

improved cigenvaluew”, and also an

approximation  for  the next order

cigenvalucw/,,. The i th modal shape g,
is given, using the cigenveelor v for the
reduced sysleny, by Eygn (24).

2,2.3 Mupdified dynamic condensation

method |11]
Firstly, seltling @, =0 in Eqn (30), it
yields an unchangeable reduced stiffhess

matrix K . Secondly, an approximaled

C.19
value is laken for lhe first eigenvalue

w! to caleulale the corresponding

reduced dynaimic matrix D, using Egn

(7).
The corresponding reduced mass matrix

for the i lh mode is given by:
(7,)= [k )-[5.] (2

The reduced eigen-problem will be:
| ~w} M v =0 (33)

As mentioned before, this equation is

solved to  obtain  an  improved

cigenvalue @, and also an

approximation  for  (he next order

eigenvaluew’,. Also, lhe ith modal

shape ¢, is given using Lgn (24).
3- Faclors affect natural frequencics of
circular cable roofs [12]

Using a compuler program
based on the frequency domain nethod
mentioned  Lefore [13], the nalural
frequencics and mode-shapes of many
circular cable rools (netls, concave grids
and convex grids) are calculated; Fig.
(1). These

natural  frequencies  are

rccaleudated  for  different  values  of
sag/span ralio, risc/span ralio, spacing
between the nodes, ihie sleel arca of Lhe
sagping cable, lhe stecl area of the
hogging cable, the steel arca of the
hangers, the pretension of the sagging

cable, ihe pretension of the hogging
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cable and the pretension of the hangars.
To carry out the influence ol any factor,
it is considered that the other factors arc
kepl constant, The results are shown in
non-dimensional graphs, Figs. (2) (0
(17). The analyzed roofs (nets, concave
grids and convex grids) have of (he
following properties: Diameler = 40.0m,
Spacing = 4.0m, Sap = 1.60m (4%), Rise
= [.20m (3%), w = (.1 Ui, initial
tensions [or all cables = 6.25 ton with
modulus = 1663tcny’ , steel area of all
13.92 em’

members =

10.00m.

and lleight =

3.1 Natural (requencies of circular
cable nefs

The resulls preseated in Figs. (2) to
(6) showed that:
1) Increasing the applying uniformly
distributed loads decreases (he natural
(requencies.
2) Increasing Lhe pretension increases the
nalural frequencies.
3) Increasing the cable steel area does
not change the first natural frequency,
whereas  higher natural  [requencies
increase in a very slight rate that can be
considered unchanged also.
4) Increasing the sag/span ratio decreases
the natural {requencies.

5) Increasing the spacing between nodes

decreases ihe natural frequencies.

Nabil Sayed Mahmoud, Ahmed Badr, Mohamed Naguib Abou El-Saad

Figurcs (7) and (8) represent the first twy
mode-shapes of the circular cable net
with the properties mentioned before.
3.2 Natural frequencies of circular cable
grids

The results presented in Figs. (9) to
(17} show (hat:
§) focrcasing Lhe sag/span ralio increases
the natural frequencies of both concave
and convex grids in a small rate.
2) Increasing the rise/span  ratio has
approximately no elfect on convex grids,
whereas il increases the natural frequencies
of the concave grids in a small rale.
3) Increasing (he

spacing  between

hangers deereases he natural
frequencies.

4) lncreasing the steel area of one of the two
cables increases the naturat [requencies in a
very simall rate so that it has practically no
cllect. Also, hangers, either ties or strufs,
have no effect on the natural frequencies.

5) Increasing the pretension of cither the
suspension or the pretensioned cables
increases the natural (requencies. The
same thing will happen when increasing
the pretension ol the hangers, but in a

smaller rale.

4- Conclusions:
A frequency analysis ol cable roofs is

an essential slep lo complete their
dynamic analysis. Frequency domain
analysis of cable roofs is obtained using

an iterative eigen-problem and a spectral
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density function of the dynamic toad,
which is most probably due to wind. The
foltowing conclusions are drawn:

1) Increasing the sleel areas of cables or
hangers has approximalely no ellect
upont  the dynamic stabtlity ol the
structure. This is due to thewr very small
own weight compared with the applied
loading.

2) Increasing sag/span ralio of a cable net
makes the struclure more dynamically
excitable, whereas ncreasing soag or risc
to span ralios in cable grids shightly
increases the dynamic stability of (he
struclure.

3) The mosl efficient and ecconomic
solution to make the circular cable roof
more dynamically stable, is lo increase
the pretension of ihe cables and ihe
hangers,

4) Convex grids are dynamically betfer
than concave grids and both are better

than cable nets,
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Fig. (11); Effect of the spacing between hangers and natural frequencles of the circular cable grid.
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Fig. (14): Effect of the sieel area of the hangers on natural [requencies of the circular cable grid.
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Fig. (16): Effcct of (he pretension in lie pretensioned cables on the natural frequencies of the circular cable
grid.
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Fig. (17): Effect of the prelension in the hangers on the natural frequencies of the civcular cable grid.
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