SOME ANATOMICAL STUDIES ON LUNGS OF THE FOX (ALAPOS LAGOPUS)

Vin; , El-Morsi, S El-M. and Nosur, H. M.*
si: \because. . Department of Analomy a nd Embryotogy: Facl. of Vel. Med. Mansoura Universily
\therefore. Department of Anatomyr end Enbryology. Facl of Vel. Med. Zagazig Universily

ABSTRACT
The morphological features. rainfication of the bronchlal tree and arborisation of the pulmonary vessels of the lungs of the fox-were studled on eleven antmals by dissec$\therefore \because$, tion. roentogenography and cast preparation. The obtained result revealed that. the -..' : :lungs were divided by deeper pulmonary fissures into lobes. four on rigint and two on lefl. The left apical tobe was diulded inito cranlal and cauclal parts witle. Wie right did nol and each lobar had its oun hilus and received one lobe bronchus. The lef and right apird and accessory tobar bronchi were divided into two segmental bronchi. bul the midille orte was behaved as segmental bronclius, while bolh of the right and lefl caudal bronchl were dulded cnto a serles of long ventrat and short dorsal seginental bronchi. Each lobar vessel was ramified in a jashion like that of the corresponding bronchus. The ascendant and descendent arterial raml of the apical lobes ware delached off on right by a common stenn, but independenlly on left. The right crantal slums received, the right apical and the midrlle lobar veins. The left cranial sinus recelved the , ascendant and descendant segmmital veins. The caudal strus received both of the right and left lobar caudal and the accessory lobar veins. The resull have been dis cussiced suith the available lterature

antrónuction

The fictel of the pulmonary anatomy tas been widely investigated and reported the domesUc and lalsoratory anlmals by many authors such as (9, 23, 16, 27, 8, 4 and 7). Rocently the attention lizs been pald for the wild anemal such as the fox to disclose the comparaltve relationship betwern them and the domestic animals. For this reason the present study was intended to describe the anatomy of the fox lungs aiming for adding some scienunc informatorn in a deld which is nincrely still obscure up (lll now.

MATERIAL AND METHODS

The present study was made on eleven healtily fox (Alopex lagopus) of both sexes. The andmals were sacifled and prepared for the dissection and further investigations. The study was carried oul by dissection. roentgenogra-phy and corrostive cast preparation techniques. Three formalin-ilxed car-casses were utlized for the topog-raphical and morphological studies of the lungs in situ and for after excision from the body. Enghe fresh carcasses were evisccrated for exclston of illtached hearts and lungs. The pulmo-rary vessels were thoroughly washed out wh normal saline solution. The bronchography and vasography of the lungs were done by injection of 40% bartum qulphate suspension through the right ventricle into the pulmonary tunck and /or through the left atrlum into the pulmonary veins and /or through the trachea into the bronchial tree. The corrosive trachobronchial casts were prepared by injection of coloured latex through the trachea into the bronchial tree. The corrosive casts were obtained by ald of concentrated hydrochloric acid. The obtalned results were received and discussed with the avallable literature. The nomenclature used were those adopted by (19).

Abstract

RESULTS The muphological features of the lungs (Pulmo dexter and slnister). (Figs. 1. 2. 3 and 4), Each lung was a roughly elongated pyrarnld, having an apex, a base, two surfaces (costal and mediast1-nal) and three borders (dorsal. ventral and basal). The right lung was comparatuvely larger and heavier than the left one. The matiox of each lung was divided by a numbers of deep pilmonary fissures into well distinct lobes. The right lung (Figs 1 and 3) had three interiober fissures and four lobes. Fissura cranlalls pulmonis between Lobus cranlalis pulmonis dexter and Lobus medius pulmonis, Fissura caudalls puimonis between Lobus medius pulmonis and Lobus caudalis dexter and Fissura paras-agitalis pulmonis between Lobus acces-sorlus pulmonis and Lobus catudalis pulmonis. The left lung (Figs 2 and 3) had two fissures and two lobes, Fissura cranlalis pulimonls between Pars crani-alis and Pars caudalls of Lobus apicalis cranlalis pulmonis sinister and Fissura caudalis pulmonis between Pars caudalis of Lobus apicalis cranialis and Lobus caudalis puimonis sinister. All of these pulmonary fissures with the exception of the left crantal one ware deeper and reached to the principal bronchi. The lobulatlon of the lungs was indistinct.

The apex of each lung (Apex pulmonis) was formed by the most cranial part of its cranlal lobe. It was rounded in the ryght lung and pointed in the left one. The base or the daphrag-matic surface (basis pulmonls or Facies diaphragmatica) of the right lung was formed by the dlaphragmatic surfaces of its caudal and accessory lobes, while that of the left lung, it was formed only by

the diaphragmatic surface of its caudal lobe. The costal surface. (Facies costalis) of cach lung was convex. attained the confguration of the internal surface of the thoracic wall and revealed superficial impressions of the ribs.- The mediastinal surface (Facles mediastu-nalls) was less extenslue, than the costat dne. It was irregular and moulded on the contained organs of the mediasunal space. The dorsal border (Margo (lorsalls) of each lung was formed by that ol, the cranial and caudil lobes, it was thin and sharp cranially and thick rounded caudally. The ventral border (Margo ventralls) of each lung was sharp and thin and revealed a cardiac notch opposite to the heart. The ventral border of the right lung extended from tis apex to the ventral end of the middle loluc. while that of the left one. It was extended from its apex to the ventral end of its caudal tobe. 'The right cardiac notch (Inclsura cardiaca dexter) was bounded cranfally by the right cranial: lobc and caudally by the middle one. It was irregular rectangular in out line and extended from thic level of 4 (h) to 6 th intercostal spaces. Meanwhlle; the left one (Incisura cardiaca sinister) was inter-posed in between the crantal and caudal parts of the left cranial lobe. It was widèr than'llie right one:' semicircular in outline and extended from the tevel of the 4 th to 7 th Intercostal spaces. The 'basal bördè (Margo basalls) of each lung was a thin' sharp and convex border.

The right lung (Pulmo dexter) (Figs 1, 3 and 4):-
\therefore; The pight Pylmonary aplcal lobe (Lobus apicalls Pulmonis dexter (Figs $/ / 1$ and $3 / 10$). It was Irlangular In outline, having, a thin. cranloventrally directed apex and thick caudodorsally directed base that was partially overiled the crantodorsal part of the costal surface of the middle lobe. Its hilus was located caudodorsally at the medial surface.

2- The pulnonary middle lobe (Lobus medius pulmonis) (Fig 1/2 and 3/11), It wàs wedge \cdots,: šhaped, having caudov-en-trally and laterally directed apex and crantodorsdlly directed - \because basc. Thé craniodorsal portion of the lobe was concealed by the preceded lobe. while its \because caudodorsal portion was partlally overleaped the cranio-dor-sal portion of the right diaplijugmatic lobe.'The hilus was localed dorsocra-nlally at the medial surfacents
3- Thc pulnionary accessory liöbe (Lobus accessönus puimonts) (Figs 3/12). It was a three-' sided prismatic in outline. having a cranially directed apex lied at the root of the lung ánd a caudally directed base facing to the dlaphragn. It was located on the mediastinal surface of the lung. Its lateral surface presented a ciep longltudl-nal gropye for lodging Vena cavae caudalis, white its medial one revealed an oval area related to the left pulmonary diaphragmatic lobe. The hidus was located crantally at the apex.
4-. The light pulpaqnary dlaphragmatic lobe (Lobus diaphragmaticus dexter pulnonis) (Fig $1 /$
$3,3 / 13$ and $4 / 1$). It was triangular in outline. its medial surface partially came in close conlact with the accessory lobe and revealed impression of Vena cavae caudalis. Meanwhile, the caudal surface was lied against the diaphragm and constituted the majority of the claphragmatic surface or base of the right lung. The hilus was located dorsocranially at the medial surface.

The left lung (Pulmo sinister) (Figs 2,3.4) :-

1- The left pulmonary apical lobe (Lobus apicalis pulmonis sinister) (Figs 2/1, 2.3/4, 5). It was clivided tnto cranial and caudal parts by the left cranial pulmonary flssure. Each part was very thin cranfally and comparatively thick caudally. The cranial part was triangular In outline. having a cranioventrally directed apex while. the caudal one was elongated and lancet-like with a caudoventrally directed rounded apex that was discended more distally beyond the level of the cranial part and that of the left puimonary dlaphragmatic lobe. The proximal portion of the caudal part was partially over-leaped the caudal portion of the cranial part as well as, the dorsocranial portion of the suc-ceeding left puimonary diphgranatic lobe. the hilus was located dorsome-dially at point of its division .
2. The left pulmonary diphragmatic lobe (Lobus diaphragmatic pulmonis sinister) (Figs 2/3, $3 / 16,3 / 4)$. It was similar to the right one with the exception that. its medial surface was landed on the accessory lobe and lacked the Impression of Vena cavae caudalls and its diphragmatic surface formed the whole base of the left lung .

Tracheobronchial tree (Fig 5 \& 6)

The trachea was blfurcated at the level of the fffth thoracic vertebra into right and left princtpal bronchi (Bronchi principals dexter et sinister). Each bronchus proceeded caudolaterally to gain the hilus of the corresponding lung. The right principal bronchus was considerably larger and thicker than the left one and gave off four lobar bronchl. while the left one gave of two lobar bronchi. All of these lobar bronchi. Behaved a short extrapulmonay courses before entering the hilus of the corresponding lobe.

A- Bronchus principalis Dexter (Fig 5/2, 6/2) :-

1- Bronchus lobaris apicalis dexter (Fig 5/3, 6/3). It erupted from the dorsolateral aspect of the right stem bronchus just at its origin, turned cranloventrally to gain the hilus of the right apical lobe and divided into larger ventral and sraaller dorsal segmental bronchus.

The former supplied the ventral half of the lobe by a dorsal and ventral series of 5-7 subsegmental bronchi, while. the dorsal one supplied the craniodorsal segment of the lobe by 3-5 subsegmental bronchi. In addition to these segmental bronchi, it detached off close to its origin a dorsal supplementary segmental bronchus that was supplied the caudodorsal segment of the lobe.
(1) 1

2- Brouchus lobaris medjus (Fig 5/2. 6/5). It detached from the ventrolateral aspect of its parent bronchus $0.5-1 \mathrm{~cm}$ caudal to the preceded lobar bronchus. proceeded caudoven-tro-laterally to enter the hilus of the corresponding middle lobe. It extended In the axis of the lobe and behaved as a segmental bronchus where it gave off a cranioventral and caudodorsal series of subsegmental bronchi whose distributed in the corresponding areas of the lobe.

3- Bronchus lobaris accessorius (Fig 5/6, 6/6): It esupted caudal to the preceded lobar bronchus from the ventromedial aspect of the parent pronchus and just before origin of succeeding one and extended caudomedially to enter the hilus of accessory lobe. It was divided into a ventral and ciorsal segmental bron-chus of equal stze, the former gave off a caudodorsal, while the later one gave off a cranioventral rows of subsegmental bronchi to the corresponding areas of the lobe.

4- Bronchus lobaris diaphragmaticus dexter (Fig 5/4, 4/7). It was the direct caudal conunuation of the right principal bronchas. It pro-ceeded caudolaterally to gain the htlus of its diaphragmetic lobe where, it continued caudodorsally and gave 5-6 ventral and 3-4 dorsal subsegmental bronch. The formers were longer and larger and directed caudolaterally and venlrally, while, the later ones were smaller and directed caudodorsally. each supplied the corresponding areas of the lobe.

B- Bronchus principalis Sinister (Fig 5/3, 6/3)

1- Bronchus lobaris apicalis sinister (Fig 5/8. 6/8). It emanated from the dorsolateral aspect of the parent bronchus 1 cm . From its origin and directed to the hilus of the left apical lobe where if was sooner divided into larger cranial and smaller caudal segmental bronchi for the corresponding parts of the lobe. The cranial bronchus turned cranially and gave off 5-6 largc cranloventral and $3-4$ small craniodorsal subseg-men-tal bronchi for the corresponding areas of thls part. Meanwhile. the caudal bronchus was coursed caudolaterally and ventrally in the caudal part of the lobe and gave off 5-7 long cranioventral and 3-5 caudodorsal subsegmental broncht for the corresponding areas of this part.
 Unuation of the parent bronchus, it proceeded, catodojator-ally to gain the hilus of left diophrawnatuc lobe and behaved as the itglat one folts ramincation. : ; .

Truncis: Pulomonalis (Fig. 7) : It emanated from the conus artertosus of the right ventricle. proceeded dorsocaudally between the right and left aurteles and continued further caudad along the left ventral aspect of the trachea. It measured an average lengul of 11 cm and width of 0.8 cm, enveloped with the ascending aorta by common sheath of the visceral layer of the serous peitcardilin and connected with the aorlic arch by Legamentum arterlosumi. It was divided cranloventrally to the tracheal blfurcation Into relatlvely larger nght and large left pulmonary arterfes.
A. The ilght pulmonary artery (A pulmonalis Dexter) (Fyg 7/2): It crossed under llei venual aspect the tracheal bifurcation to gain the ventrolateral aspect of the right stem bronchus. to continued further caudad on its dorsolateral aspect and detached off the following branches.

1-The right crantal lobar branch (Ramus lobl cranlalls Dextrl) (Fig.7/2): It was erupted from the dorsoloteral aspect of the parent artery 1 cm from Its orgin, turned cranloventraliy to galn the hilus of the right cranlal lobe where it divided into larger ramus ascendens lobi cranialis dextry and smalicr ramus descendens lobl cranlalls dextri. These ramil followed the (lorsolateral aspect of the corresponding segmental bronchi and their subsegmental bronchi in their ramification within the cranial and caudal parts of the right aplcal lobe.

2- The milddle lobar branch (Ranus lobl medil) (Flg 7/4): It was detached from the lateral aspeol of the parent artery 0.8 cm caudal to the preceded branch. cxtended caudolaterally to galn the dorsolateral aspect of the middle lobar bronchus where it ramilled with the corresponding subsegmental bronclil.

3- The accessory lobar branch (Ramus lobl accessril) (Fig 7/5): It was detached fromithe venlromedial aspect of the parent artery 0.5 cm caudal to origin of the prevlous branch. It coursed caudomedially and crossing the ventral aspect of the right caudal lobar bronchus to galn, the accessory bronchus and divided into dorsal and ventral branch that were enfirely flow the ventrocaudal aspect of the corresponding scgmen-tal bronch! and their subclivisions within the lobe.

4- The right caudal lobar branch (Ratnus lobl caudalis dextri) (Fig $7 / 6$): It was the direct continuation of the parent artery which proceeded caudally along dorsolateral aspect of the right caudal lobar bronchus and gave off large long ventral and small shorl dorsal branches whose followed the corresponding segmental bronchat in their ranificallon.
A. The left pulmanary artery (A. Pulmonalis Sindster). (Fig 7/7) :

It was coursed laterally to gain the dorsolateral aspect of the left stem bronchus and detached off the lollowing branches.

1- Ramus ascendens lobi cranlalis sinistri Fig (7/8). It was detached from the lateral aspect of the parent artery shorl distance 0.3 cm from tts origin for the cranfal aspect of the left aptcal lolse. It proceeded cranloven-trally to gain the dorsolateral aspect of the corresponding cranial segment bronchus.

2- Raurus clescendens lobl cranial(s sinistrl (Fig 7/9): It was detached from the parent vessel 0.5 cm caudal to the prevlous one for the caudal part of the left apical lobe. It proceeded caucloventrally to gain the dorso-lateral aspect of the corresponding caudal segment bronchus. These rami enturely followed the corresponding segmental bronchi in their ramincation.

3. Ramus lobi caudalis sinistri. (Fig 7/10):

Il was similar to the right one in its origin. course and destination.
Venac l'ulmonales (Figs. 8. 9):-
The pulmonary velns of the both lungs were emanated from the roof of the left atrium through three sinuses, right cranial, left crarlal and caudal sinuses.

I. Sinus cranlalla Derter (Fis 8/1, 9/1):

It detached off the veins of the right aplcal and middle lobes.
(a) V. Ihilmonalls lobi cranialls dextri (Fg 9/4): it coursed laterally, then divided into ascendant and descendant segmental branches, these branches entirely followed the corresponding segmental bronchl in their ramification whthin the crandal and caudal parts of the right aplcal lobe.
(b) V. PIImonalls lobi medil (Fig 9/5): It proceeded caudolaterally to galn the craniomcdial aspect of the corresponding bronchus and behaved as seg-mental branch within the middle lobe.

1I. Siaus cranialis sinister (Fig 8/2, 9/2) : It detached off the ascendant and descendent segmental branches, drained the cranial and caudal parts of the left aplcal lobe. Each branch

III. Sinus caudalis (Fig 2/3, 9/3): It detached off the veins of the right caudal, left caudal and accessory lobes.
(a)'V. Pulmonalis lobi caudalis dex(r) \{Fig 9/6). It coursed on the ventromedial aspect of the righi caudal lobar bronchus and gave off large ventral and short dorsal segmental branches whtch accompanied the corresponding segmental broncht in their distribu-tion.
(b) V. I'ulmanalis lobi accessrli (Fig 9/7): It detached from the previous one near the sinus and coursed along the cranial aspect of the correspond-ing lobar bronchus and divided into dorsal and ventral segmental branches distrjbuted with the corre-sponding bronchi .
(c) V. I'ulmanalis Lobi caudalis Sinistri (9/8) : It was similar to the right one in its course and distribution.

DISCUSSION

The present study revealed that. the lungs of the fox were divided by deeper fissures into lobes. The right lung was consisted of four lobes whlle the left one was conslsted of two lobes in agreement with that recorded in pig $(28,6,12,23$. and 4), ruminants $(6,12,23$ and 4$), \operatorname{dog}(6$. 12, 23, 16, 8 and 4), cat (1, 6 and 23), mink \{25\}, rabbit (5 and 21) and ferret (24).

The lelt aplcal lobe of the fox was divided into cramial and caudal parts stmilar to that described in ruminants $(6,12,23$ and 4$)$, pig ($28,6,12,23$, and 4), dog (6, 12, 23, 16, 8 and 4). mink (25) and cat (1, 6 and 23). But dissimulated that recorded in horse ($6,12,23$ and 4), rabbit (5 and 21) and ferret (24). The left apleal lobe of bovines had an acces-sory hilus. A condition did not observed in the fox.

In aceord with that recorded in pig and horse ($6,12,23$ and 4), dog (6,23, 8 and 4), cat (1.6, 2.3 and 4). nink (25), the lobulation of fox lungs were in-distinct. Percontra, the lobulation of lungs was distinct in bovines (6, 4, and 23) and camel (9 and 11).

In agreement with that reported in horse, dog. cat and pig (6, 12, 23 and 4) the right apical lobe of the fox was undi-vided. However, such lobe was divided in ruminants ($6,12,23$ and 4).

The right apical lobar bronchus was divided into two segmental bronchus in horse (23 and 4). $\operatorname{dog}(10.6,12.23,16.8$ and 4$)$, cat $(1,6,12.23$ and 4$)$, sheep $(13,15,6,23$ and 4$):$ pig $(28,6$. 12. 23 and 4): goat ($6,23,26$ and 4) and rabbit (5 and 21). Similar pattern was observed in the fox. Moreover, the present study revealed an additional dor-sal supplementary segmental bron-
chus detached off from the parent bronchus prior to its' division-simtlar to that described in cat (1). However, the corre-sponding tracheal bronchus 'gave off four segmental bronchil in the plg (13 and 28) and camel (20).

The present study revealed that. each of the middle and accessory lobar bronchi were detached off from the right stem, bronchus in an independent man ner sinllar to that described in cat. (1). riblull (21) and-ferret (24). but dissimilar with that recorded in sheep (15) and goat 18 and 26) whereas, these bronchl were erupted by a common stem from the parent bronchus. The middle loisar bronchus of the fox was coursed whin The middle lobe along its axds and behaved as a segmental bronchus like that of dog (16), goat (18 and 26). rabbit (21) and ferret (24). However, such bronchus was divded into three segmen-tal bronctui in bovines $\{(3)$ ant two segmental bronchi in cat \{1\}. The accessory lobe bronchus of the fox was divided tito dorsal and ventral segmental bronchi similar to that described in domes-uc anmals (6, 23 and 4). cal (1) and mink (25).

The lell apleal lobar bronchus of the fox was divided Into craslal and cau-dal segmental bronchi in agreement with that described in ruminants (6,12 and 4), $\operatorname{dog}(6,12,8$ and 4) and lerret (24). But disagreed with that recorded in pig (28) and camel (20) whereas. such lobar bionchus was divided Into threc segmen-tal bronchi, as well as with that described In catlle. horse and sheep (12) and rabblt (21) whereas, such bronchus behaved as a segmental bronehus.

The piesent study revealed that. both night and left caudal lobar bronchi were divided Into a dorsal and ventral rows of segmental bronchi of varying call-bers and lengths like that described in domestic animals (6, 23 and 4). mbok (25) and rabbll (21).

The present study found that. each of the right and left apleal lobe received (wo segmental artenial branches, ascendant and descendant branches. These ramn were originated by it conimon trunk from the right pulmo-nary artery, but in an Independent man-ner from the left one. This Onding came In agreement whth that recorded in dog (13). mink (17). buffalo (14) and sheep (27). but disogrced with that descrlbed in cat (1) whereas. these artertal ranti of each lobe were emanated independenuly from the corresponding stem artery. As well, the present findings dissimulated that clescribed in camel (20) and goat (26) in which the right apleal lobe recelved two arteri. al rami while the left one recelved 2.3 raml, each ramus ortgi-nated lisdependently from the corre-sponiding stem artery.

The present study revealed that, the midde and accessory lobar artories were emanated from the right pulmonary artery in a separate sequential patlern like that of the rabbit (21), but conflicted to some extent with that described in the pig (13), goal (26) bulfalo (14) and sheep (27) whereas. "hese arterles were emanated separately oppo-site each other.
 sheep (27). the pre-sent study revealed that. the origin, course andidistribution of the right and left caudal pulmonary arteries were similar but the differences were restricted only to the number of thelr segmen-tal branches.

In agrecment with that recorded in $\operatorname{dog}(10$ and 22), mink (17), domestic animals (13 and 12). goat (26). buffalo (14) and sheep (27). the pulmonary velns of the fox were emanated from three sinuses losated in roof of the left atrium. The summation of the pulmonary veins of the fox were seven in mum-ber in corresponding to $7-8$ veins in domestic andmals (13 and 12). goat (26), and buffalo (14) and $11-13$ veins in horse (3) and 6 veins in sheep (27). The ascendant and descendent veins of the left apical lobe of the dog were united to form V . lobi cranialis sinister (22), Mean-while, those of the both right and left apical lobes of the goat were emanated from the corresponding shmses in an independent manner (26). These previ-ous findings were conflicted with the present study to some extent. Such conditions might be assumed the variation in number of the pulmonary veins among the animals.

In accord with that observed in rabbit (21], mink (17), cat (1), goat (26), buffalo (14) and sheep (27). the lobar arteries and veins of the fox were coursed dorsally and ventrally in respect to the corresponcling lobe bronchus respectively. The arborisation of these ves-sels was closely followed the rami-llea-tion of the corresponding bron-chi. Accordingly. It could be concluded that, the bronchopuimonary segments of the fox were of broncho-vascular type.

El-Morsi. S. El-M. and Nosur, H. M.

 alexci: 2-Lobus medius 3-i,obus daphragmaticus dexter. 4-Incisura caldian: 5.lissum cannalis pulmonis. 6-Fissuma caudalis pumonis.
$\cdot \quad$ i. , ! ' $1 \cdot$

 nibilis jushmonts. 2-Lobus ipicalls caudalis pulnonis, 3-Lobus diaphraghations sinister. 4 luclisura cardiaca, 5-lissura canalalis pulmonis, 6-Flssura ciaudalls pulnonis.

El-Morsi, S. El-M. and Nosur, H. M.

Fig. (3) : A photograph of pulmo dexter et slnister of fox (ventral vew) showing, 1-Trachea. 2Bronchus principalls dexter. 3-Bronchus princlpalis sinlster. 4-Bronchus lobarls aplcalis dexter, 5-Bronchus lobaris medlus, 6-Bronchus lobaris accessorius. 7-Bronchus lobarls diphragmaticus dexter. 8-Bronchus lobarls apicalis sinister. 9-Bronchus lobarts dipliragmaticus sinister. 10-Lobus apicalis pulmonis dexter, 11 -Lobus pulmonis duedlus. 12-Lobus pulmonis accessorlus. 13-Lobus diphragmaticus pulmonis dexter. 14-Lobus apicalis cranialis sinister, 15-Lobus apicalis caudalis sinister. 16-Lobus dipliragnaticus pulmonis sinlster, 17-Fissura craniadls pulmonis. 18-Fissura caudalis pulmonis.

Fig. (4) : ^ photograph of lungs fox (Basis pulmonis) showing, l-Lōbtis diphiragmatic pulmonis dexter, 2-Lobus pulmonis accessorius, 3-Lobus diphragmatic julmonis sinister. 4-Vena cavac caudalis, 5-Oesophagleus .6-aorta thoracica. 7-Cardia.

Fig. (5) : A photograph of cortosion cast of (racheobronchial tree of fox (Dorsal view) showing, 1-trachea. 2. Bronchus princlpalis dexter. 3Bronchus prin-ci-palis sinister. 4 . Bronchus apl-calls dexier. 5 Bronchus ne-dius, 6-Bronchus arces-sonius, 7-Bronchus dia-pinagg-matleus dexter. 8-Bronchus api-calis sinister. 9 -Bronrlus diaphragmaticus sin-iser.

Fig. (6) : Ruentgenogram of tracheobronchial tree of fox (Ventral view) showing 1-Trachea, 2-Bronchus pitnclpalls dexter. 3-Bronchus prin-clpalls sinister, 4-Bron-chus apicalis dexter. 5-Bron-chus medius. 6-Bron-chus accessorius. 7 -Bron-chus diaphragmaticus dexIc:, 8 -Bronchus aptealis sinis-ter. 9-13ronchus dia-phragmaticus slinlster.

Fig. (7) : Rocnuenogram of pulmonary antery system of fox (Ventral view) slowing, I-Tiuncus pulmonalis. 2-A. pulmonalls Dexter. 3-R.Iobl cramalls dextri, 4-R.lobl medii, 5R.lobi accessoril. 6-R.lobi caudalis dextri, $7-\mathrm{A}$. pulmonalis sinister. 8-R. as-c-endens lobi cranalis sin-istri. O-R.descendens lobi crinalis stoustri, 10-R.lobi caudalis shistri.

Fig. (8) : Photocraph of opened lelt atrium of lox showing. L-Sinus crantalis dexter. 2-Sinus crandalis shaster. 3-Sinus caudalis.

El-Morsi, S. El-M. and Nosur, H. M.

Fig. (9) : IRontgenogram of venae pulmonales of fox (Ventral view) showing. 1 -Confluence crantalis dexter, 2-Confluence crani-alis sinister, 3-Confluence caudalis, 4-V.pulmonalis lobi ranlalis dextr, $5-\mathrm{V}$. pul-m-onalls lobi cranialls medii, 6.V.puimonalis lobl cau-dalls clextry, 7-V. pulmon-alis lobl accessortl. 8-V. pul-monills lobl caudalls slnistri, 9 K.ascendens V. pul-mon-alls lobl crantalis sinis-tr. 10-R. tescendens V. pulmon-alis Inbi crantalis sin-istri.

El-Morsi, S. El-M. and Nosur, H. M.

REFERENCES

1-Adrian, R. (1964): Segmental anatomy of the cat s lung. Ani. J. Vet. Res. 25. No. 109: 17241733.

2- Alexander, A. F. (1963) : Normal slructure of the bovinc pulmo-nary vasculalure Am.j.Vei.Rcs., 24, No. 103:1083-1893.

3- Barone, R. (1953) : Arbre bronchique ef valsseaus sanguins des ponumons chez les Equides denestiques. Res. Med. Vet.. 129: 545 563.

4- Dyce, K.; Sack, W. O. and Esiag, C. J. (1996) : Texbbook of Veteri-nary anatomy. 2nd Ed. W.B. Simn-ders Comp. Philadelphia Lou-don. Toronto.

5- Ehard, R. (1973) : Verglelchencle unter suchugen our anatomle der lungen von kicinen Versuchsticsen (Kaninchen. Mecr-schweinchen. Albino-Rattes. Syrische Goldham-sicr\}. Diss. Vel. Me:l. Ilannover .

6- El-Hagri, M. A. (1967) : Splanchmology of clomestle animals. ist Ed. PP. 54-84 Cairo Univ. Press.

7- Erasha, A. M. and Saleh, 2. M. (1999) : Contribution to the comparative anatomy of the bronclual lree in certaln experimental ani-mals. Beril-Suef Vet. Med. J. Vol. 9. No. 3-B:751764.

8-Evans. H. E. (1993) : Miller's anatomy of the dog. 3rd Ed. W. B. Saunders comp. Philadelphia Lomdon. Toronto.

Q- Fath-El-Bab, M. R. (1970) : Jlislology of respiratory systen of camel. Ph.D . Thesis, Fic. Vet.Merl. Ass. Univ.

10- Felder, G. (1962) : Beltrag zur segmentanatomic der hundelunge, Zurich Univ. Vel .Med. Fak. Diss.

11-George, A. N. (1951): The anatony and histology resphalory system of catnel.. Thesis. Fac. Vel. Mcel Cario.Univ.

12-Getty, R. (1975) : Sisson and Grossman. the Anatomy of the domes-tic anlmals. Vol. I and 11. 5 th lid. Saunders Comp. Phila-del-phia London.

13- Guzsol, E. (1955) : The topography of the blood vessels and of the bronchial tree of the domeslle inmals.Acta.Ana.Vet., Vol.V. 333-365.

14- Hagrass, S. M. (1982) : Some matoml-cal studies on the lung of the buffalo (Bos bubalis) Thesis. Fac. Vet. Med. Carlo. Univ.

15- Hare.W. C. (1955) : The broncho-pulmonary segments in the sheep. J. Anat., 89: 387-402.
16- Ishaq. M. (1980) : A morphological study of the lungs and bronchial tree of the clog with a suggesicd system of nomenclature for bronchi. J. Anat . 131:589-610.

17- Miladinovie, Z. and Jablan-Pantic, O. (1977) : Blood vessels of mink lungs (Mustela vison). Acta V(1). Vol. 27 (5) : 257-269

18- Nada, B. S. and Patel, M. R. (1968) : The normal pattern of bronchopulmonary segments in goat. Indina Vet.J.45,124-127
19. Nomina Anatomica Veterinaria (1973) : and its Annex (1975) : international committee on veleri-nary anatomical nomencla-ture of the World Assoclation of Veterinary Aratomistis. 2nd Fil. Vi-enna.

20- Osman, F. A. (1974) : Some anatomical studies on the bronchial tree and pulmonary vessels of the dromedary canel (Camelus dromedarius). M. Vet. Sci. The-sis, Fac. Vet. Med. Cairo Univ.

21- Osman, F. A.; Arnautovic, I. and El-Kaligy, G. E. (1985) : Intrapulmonary distribution of bronelat and pulmonary blood vessels In rabbits. Alex. J. Vet. Sci. 1(2):20-30.

22- Osman, F. A. and Munster, W. (1980) : Vasa pulmonals of the dog : part 2 Topographical anatomi-cal studies on the Venac pulmonales. J. Egypt. Vet. Med. Assoc. 40.No 3: 9-16.

23- Schummer, E.; Nickel, R. and Sack, W. O. (1979) : The viscera of the domestic mammals 2nd Fd. Vellgy Pual Parey. Berlin. Ham-burg

24- Selim, A.; Khidr, I. and Awad. A. (1987): Macro and micronurphologi-cal stuclies of the lungs and Bronchial tree of the ferret (Mustela Furo).

25- Simic, V.; Jablan-Pantlc, O. and Miladi-novic, z.(1970) : Beitrag zur kennints von morphotogic. broncho-graphie und vasographle der lungen des kanadische wie-sels (Mustcla vlson). Murph. Jabr-buch. $115(3)$. 295-306.

26- Swlelim. G. A. (1981) : Anatomical studies on the lung of the goat. Thesis, Fac. Vet. Med. Cairn Univ.

27- Swielim, G. A.: Hagrass, S. M. and Ragab. S. A. (1987) : Intra pulmonary distribution of the pulino-nary vessels in sheep. Egypt .J. Anat. Vol.10(1):65-76.

28- Talanti, S. (1959) : studics on the lungs of the pig. Anat. Anz.. 1:68-7

El-Morsi, S. El-M. and Nosur, H. M.

المنصص السريى .

بعض الدراسات التشريحية على رنتـى الثُعلب

تسم التشر-ح رعلم الآج-2 - كلبة الطب البيطرى - بامعن المنصروت
تسمر التُشيع وعلم الأجنة - كلية الطب البـطرى - جأمعة الزنازيقة

لقد, أجريت هنه الدرالسة على علد أحذ عشرة نعلب مستنخدمأ فى زلل التشريح الوصفى والصور الإشعاعية والقوالب اللاصيب, لدراسة مورنولوحبة الرنتين وتفرعات شعبتا القصبة الهُوانية والأرعبية الديوية الرنوية وبينت النتائع الآتى :

 منفردة بالجبيب ألدهرى الأمامى الأُسسر .

