Menoufiya University Faculty of Engineering Shebin El-Kom Final Exam

Academic Year: 2014-2015

Post Graduate: MSc

Department: Basic Engineering science Subject: Numerical Analysis (1) (BES 601)

Time Allowed: 3hrs Date: 30/05/2015

Note: Assume any data required, state your assumption clearly. Answer all questions

Question (1)

(25 Marks)

Consider the steady, one-dimensional flow of a constant-density fluid through a duct with constant cross-sectional area. Use the staggered grid shown in figure below, where the pressure p is evaluated at the main nodes I = A, B, C and D, whilst the velocity u is calculated at the backward staggered nodes i = 1, 2, 3 and 4. Boundary conditions: $u_1 = 10$ m/s and $p_D = 0$ Pa.

Question (2)

(25 Marks)

Show how the following equations

$$\zeta_{xx} + \zeta_{yy} = 0, \qquad \eta_{xx} + \eta_{yy} = 0$$

Can transformed to:
$$ax_{\zeta\zeta} - 2bx_{\zeta\eta} + cx_{\eta\eta} = 0$$
, $ax_{\zeta\zeta} - 2bx_{\zeta\eta} + cx_{\eta\eta} = 0$

Where,
$$a = x_{\eta}^2 + y_{\eta}^2$$
, $b = x_{\zeta}x_{\eta} + y_{\zeta}y_{\eta}$, $c = x_{\zeta}^2 + y_{\zeta}^2$

Question (3)

(25 Marks)

For the U-duct bend shown in the figure is composed from upstean and downstream ducts of length 10 and width 1 and a curved 180° bend of internal raduis of 2. Answer the following

- a) Use an elliptic grid generator to obtain body fitted domain.
- b) Describe in details the boundary conditions used.
- c) Obtain the transformation metrics

d) Write computer program to obtain the transformation metrics

Question (4)

(25 Marks)

The x- component of Navier-Stokes equation in two-dimensional with no body force can be written

as:
$$\frac{\partial \rho u^2}{\partial x} + \frac{\partial \rho uv}{\partial y} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Transfer the above equation to body fitted coordinates

GOOD LUCK

Dr. Samy M. El-Behery