

Subject: PHYSICS
Code: BES022
Year: Preparatory Year
Time Allowed : 3 hours
Total Marks : 75 marks
(الامتحـن صفحتّن (اجب كل جزء منفصل)
Answer all the following questions:
Part 1

Question (1)
(12 Marks)
a) Prove that the total energy of a body moves in a simple harmonic motion is conserved.
b) Consider the motion of a comet in an elliptical orbit around a star. The eccentricity of the orbit is 0.4 and the distance between the perihelion and the aphelion is $12 \times 10^{10} \mathrm{~m}$.
ind the distance of nearest and farthest approaches of the comet.
ii) If the speed of the comet is $80 \mathrm{~km} / \mathrm{sec}$ at the perihelion, what is its speed at aphelion?
c) A mass of 300 g moves along the x - direction under the influence of a spring with spring constant $0.05 \mathrm{~N} / \mathrm{cm}$. At $t=0 \mathrm{sec}$, the mass is at the origin and moving with a speed of $60 \mathrm{~cm} / \mathrm{sec}$ in the $+v e x$-direction.
(i) At what time does the mass first arrive at its maximum extension.
ii) Determine the maximum extension.

Question (2)
(13 Marks)
a) Describe and explain Kepler`s second law
b) Prove that the acceleration of gravity varies with altitude, and determine where the acceleration is vanished from the center of Earth?
c) A steel rod of length 8 m and cross-sectional area $10^{-4} \mathrm{~m}^{2}$ is fixed at one end and stretched with a force of 500 N at the other end. Find the stress, the strain, and the final length of the rod.
(Young's modulus $\mathrm{Y}=20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$)
d) Prove that the height of water in a capillarity tube is inversely proportional to its radius.

Part 2
Question (3)
(12 Mark)
a) State the physical meaning of the continuity equation (without prove)
b) A Horizontal pipe has a smooth reduction in its diameter, as in the figure. If the pressure difference " ΔP " between the two ends of the pipe is doubled, what will happen to the velocity of the fluid at the smallest end " ν_{2} ".

c) A glass-window is 3.00 mm thick and has dimensions of 3.00 m and 2.00 m . If the outside temperature is $5^{\circ} F$ and the inside temperature is $295^{\circ} K$, how much heat in joules does it conduct in each hour? ($K_{\text {glass }}=$ $0.84 \mathrm{~J} / \mathrm{s} . \mathrm{m} .{ }^{\circ} \mathrm{C}$)

Question (4)

a) Define: (i) the coefficient of viscosity, (ii) the thermocouple, and (iii) specific heat (c).
b) Why the latent heat of vaporization of water $\left(L_{v}\right)$ is so much larger than the latent heat of melting $\left(L_{m}\right)$? c) A 175 g copper block at $90^{\circ} \mathrm{C}$ is dropped into an aluminum calorimeter cup initially at $20^{\circ} \mathrm{C}$. The calorimeter cup has a mass of 400 g and contains 430 g of water, also at $20^{\circ} \mathrm{C}$. What is the final temperature of the system?
$\left(c_{C u}=0.093 \mathrm{kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}, c_{A l}=0.22 \mathrm{kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}, c_{\text {water }}=1 \mathrm{kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)$

Part 3

Question 5

a) Explain and prove that, why the molar specific heat at constant pressure $\left(C_{p}\right)$ of an ideal gas is greater than its specific heat at constant volume (C_{V})
b) O_{2} gas of 10 moles initially at $0^{\circ} \mathrm{C}$ when its volume doubles isothermally.

Calculate: i) the work done by the gas ii) the change in its entropy $(\Delta S)(R=8.314 \mathrm{~J} / \mathrm{mole} . \mathrm{K})$
c) A heat engine performs 200 J of work in each cycle and has an efficiency of 30%. For each cycle, how much thermal energy is (i) absorbed $\left(\mathrm{Q}_{\mathrm{h}}\right)$ and (ii) expelled (Q_{c})?

Question 6

(13 marks)
a) Using the pressure of an ideal gas $P=\frac{1}{3} \rho \overline{v^{2}}$, prove that the root - mean square velocity of an ideal gas is given by $v_{r m s}=\sqrt{\frac{3 R T}{M}}$
b) Two ideal gases Hydrogen ($M=2 \mathrm{~g} /$ mole) and Oxygen ($\mathrm{M}=32 \mathrm{~g} / \mathrm{mole}$) are at the same temperature. If the $v_{r m s}$ velocity of the Oxygen molecules is $4 \mathrm{~m} / \mathrm{s}$, calculate the $\mathrm{v}_{\text {rms }}$ velocity of the Hydrogen molecules.
c) 10 mole of a sample of an ideal gas is put through the cycle of operations shown in the figure where $B C$ is an adiabatic process.
i) What are the values of T_{A}, T_{B} and T_{C}.
ii) Find the heat (Q), work (W) and $\Delta \mathrm{U}$ for each process.
(Take $C v=\frac{3}{2} R$)

With our Best Wishes This exam measures the following ILOs

Question Number	Q2-c	Q5-d	Q1-a	Q1-a	Q3-a	Q4-a	Q1-c	Q6-E	Q2-c	Q2-a	Q3-b	Q4-b	Q4-b	Q6-a	Q3-c	Q4-c
Skills	al-1	al-2	a2-1	a2-1	a1-2	al-2	b4-1	b4-1	b2-1	b4-1	b4-1	b4-1	c9-1	c9-1	c4-3	c3-3
	Knowledge \&Understanding Skills						Intellectual Skills						Professional Skills			

