(My Coo) \ (My Coo) \ (My Coo) \ (My Coo) \ (My Coo)

Menofia University

Faculty of Engineering, Shebin El-Kom Basic Engineering Science Department

1st Semester Examination,2014-2015

Date of Exam: 13 / 1 / 2015

Subject: PHYSICS

Code: BES022

Year: Preparatory Year Time Allowed: 3 hours Total Marks: 75 marks

الامتحان صفحتين (اجب كل جزء منفصل)

Answer all the following questions:

Part 1

Question (1) (12 Marks)

a) Prove that the total energy of a body moves in a simple harmonic motion is conserved.

b) Consider the motion of a comet in an elliptical orbit around a star. The eccentricity of the orbit

is 0.4 and the distance between the perihelion and the aphelion is $12x10^{10}$ m.

ind the distance of nearest and farthest approaches of the comet.

- ii) If the speed of the comet is 80 km/sec at the perihelion, what is its speed at aphelion? c) A mass of 300 g moves along the x- direction under the influence of a spring with spring constant 0.05 N/cm. At t=0 sec, the mass is at the origin and moving with a speed of 60 cm/sec in the +ve x direction.
- (i) At what time does the mass first arrive at its maximum extension.
- ii) Determine the maximum extension.

Question (2)

(13 Marks)

- a) Describe and explain Kepler's second law
- b) Prove that the acceleration of gravity varies with altitude, and determine where the acceleration is vanished from the center of Earth?
- c) A steel rod of length 8m and cross-sectional area 10⁻⁴ m² is fixed at one end and stretched with a force of 500 N at the other end. Find the stress, the strain, and the final length of the rod.

(Young's modulus $Y = 20x10^{10} \text{N/m}^2$)

d) Prove that the height of water in a capillarity tube is inversely proportional to its radius.

Part 2

Question (3)

(12 Mark)

- a) State the physical meaning of the continuity equation (without prove)
- b) A Horizontal pipe has a smooth reduction in its diameter, as in the figure. If the pressure difference " ΔP " between the two ends of the pipe is doubled, what will happen to the velocity of the fluid at the smallest end " ν_2 "?

c)A glass-window is 3.00 mm thick and has dimensions of 3.00 m and 2.00 m. If the outside temperature is $5^{\circ}F$ and the inside temperature is $295^{\circ}K$, how much heat in joules does it conduct in each hour? ($K_{\rm glass} = 0.84 \ J/s.m.^{\circ}C$)

Question (4)

(13 Marks)

a) Define: (i) the coefficient of viscosity, (ii) the thermocouple, and (iii) specific heat (c).

b) Why the latent heat of vaporization of water (L_{ν}) is so much larger than the latent heat of melting (L_m) ?

c) A 175 g copper block at $90^{\circ}C$ is dropped into an aluminum calorimeter cup initially at $20^{\circ}C$. The calorimeter cup has a mass of 400 g and contains 430 g of water, also at $20^{\circ}C$. What is the final temperature of the system?

 $(c_{Cu} = 0.093 \text{ kcal/kg} ^{\circ}C, c_{Al} = 0.22 \text{ kcal/kg} ^{\circ}C, c_{water} = 1 \text{ kcal/kg} ^{\circ}C)$

Part 3

Question 5

(12 marks)

a) Explain and prove that, why the molar specific heat at constant pressure (C_p) of an ideal gas is greater than its specific heat at constant volume (C_V)

b) O_2 gas of 10 moles initially at 0°C when its volume doubles isothermally.

Calculate: i) the work done by the gas ii) the change in its entropy (ΔS) (R =8.314 J/mole.K)

c) A heat engine performs 200 J of work in each cycle and has an efficiency of 30%. For each cycle, how much thermal energy is (i) absorbed (Q_b) and (ii) expelled (Q_c)?

Question 6

(13 marks)

a) Using the pressure of an ideal gas $P = \frac{1}{3}\rho \overline{v^2}$, prove that the root – mean square velocity of an ideal gas

is given by
$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

b) Two ideal gases Hydrogen (M = 2g/mole) and Oxygen (M = 32g/mole) are at the same temperature. If the v_{rms} velocity of the Oxygen molecules is 4m/s, calculate the v_{rms} velocity of the Hydrogen molecules.

c) 10 mole of a sample of an ideal gas is put through the cycle of operations shown in the figure where BC is an adiabatic process.

i) What are the values of T_A , T_B and T_C .

ii) Find the heat (Q), work (W) and ΔU for each process.

$$(Take\ Cv = \frac{3}{2}R)$$

With our Best Wishes

This exam measures the following ILOs																
Question Number	Q2-c	Q5-d	Q1-a	Q1-a	Q3-a	Q4-a	Q1-c	Q6-c	Q2-c	Q2-a	Q3-b	Q4-b	Q4-b	Q6-a	Q3-c	Q4-c
Skills	al-l	a1-2	a2-1	a2-1	a1-2	a1-2	b4-1	b4-1	b2-1	b4-1	b4-1	b4-1	c9-1	c9-1	c4-3	e3-3
	Knowledge &Understanding Skills						Intellectual Skills						Professional Skills			