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ABSTRACT
A  c¢ertain type of the inverse problems of =steady heat
conduction with heat generation in a itLwo-dimensional plane wall
has been analyzed. The analysis results in a general exact
solution feormulated in explicit. expressions for temperature and
heat flux calculation. Validity of the proposed solution have
been proved by test probiems having known exact scolutions. The

effect of heat generation in the wall is accurately modeled in the
general scolution.

1. INTRODUCTION

In many steady-state, heat transfer investigations using a
flat plate as the test sgection. some technical difficulties may
arize, i it is desired to measure temperature at more than one
boundary surface of the plate. Further, the presence of a
thermocouple at. the effective heat transfer surfage of the tLestad
plate may affect. the heat transfer modes close to the temperature
sensor. Moreover, the conductive heat 4Lransfer in the plate body
may be significant. in twe directions due to effect of the
investigated phenomencn or.and the distribution feature of the
applied heat flux. In =uch a practical situation, 1t may be
necessary Lo solve the two-dimensional heat conduction problem in
the plate wall in order to predict accurately the temperatures and
heat flux at the effective heat transfer =surface using only some

corresponding measurements at Lhe opposite plate surface. This
problem ig not a classical boundary value problem characterizing
by two boundary ceonditions in every direction. but it Ii=s

identified as inverse problem in heat conduction literatures. Beck
[1} has classified the Inver=se problems to steady, and transient
problems,

In the last three decades or so, there has been considerable
interest in the solution of the transient inverse problems. Most
of those studies have been performed pumerically (e g, [2-41),
while the analytic soluticns <e g, [6,7DD are still =scarce and
restricted to the one-dimensionzal case due Lo the difficultly of a
multi-dimensional solution {51
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In 1964, Burggraf [681 derived an exact analytic solution; in a
serie=s form, for the inverse problem of transient.,
one—-dimensional, heat conduction. Thizs seolution reads

«© ™ ® n
T( G2 d To ) 1_ Gt d q, 3
x,T> = ™ Lal k Lal ™
GZnd! a dr CZns+1dia dr
n=0 s n=0

where o is the thermal diffusivity, T, ¢=T<0,T>> and q_ <=q<0,7>>

are known boundary condition=s which =should be continuous and
differentiable functions of the, time wvarlable ~.

Recently, general exact solution for a certain type of the
inverse problems of steady, two-dimensicnal heat c¢onduction has
been derived for a planar wall, in x,y)-cartesian coordinates [¥l.
This steady selution i= omewhat. =imilar to the transient
zolution of Burggral <cf Eqg. J{15). The analogy between the two

soluticons i= Iin that the y variable in the steady sclution simulates
the role of the time variable in the transient socolution.

It. is Important to note that the above mentioned steady seclution
(91 1s lmited to the case of no heat generation in the wall
However, if this effect could be modeled in the soiution, the method
will become of more theoretical as well practical interest..

Therefore, the present paper is concerned with estimating
two-dimensional, steady-state, temperature distribution in a planar
wall invelving heat generation, by utilizing the distributions of

t.he temperature and the exterior heat flux; both prescribed at the
Same boundary surface as functions of the spatial coordinate along
t.he surface. Validity of the present solution is proved.

2. ANALYSIS

Consider a rectangular plate with internal heat generation which
is confined by the region: 02 x = L, 0 y = 1 <(ef Fig. 13 The
temperature and the exterior heat flux at the boundary surface
3,¥> are known continuous and differentiable functions of the
variable . Our main objective is to obtain the steady (x,y)>-field
of temperature using only these two boundary conditions.

¥y

T°<y3= vy 2 2

!

@
L]
@
3
Wl.Q!

=S
qo(y)- Ty

N
2

2
2

Y L
Fig. 1 The stated inverse problem
Assuming constant thermal conductivity and uniform internal heat

generation, the mathematical formulation of the problem may be given
by
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where y{y> and ['(y> are arbitrary functions of y, which should be
continuous and differentiable. g 1s the wvolumetric heat generation
rate.

It iz known that the =superposition principle is frequently
used in heat conduction analysis to solve a more complex problem
by dividing 1t into a number of simple problems; all adding up the
posed problem. Based on this knowledge, we =implify the problem of
Fig. 1 by dividing it lnto two simpler problems (cf Fig. 2J,

y ¥

1

+ w(D,y>-T°(y)

Fig. 2 Dividing problem (1> into 2 simpler problems

By this way, sclution of problem (13 is assumed to be
TO,y? = plx,y> + @G0 2D

Here, ¢<{x) iz assumed to satisfy the one~dimensional problem :

z »
12 + 2 =0, 32>
d.’(z
0> = 0, ¢3b>
d¢ = 0. 3e>
x

=0

From combining Egs. {1a) to <3¢, we find that the function wx,y2
is satisfled by

a_“?_-l- Rl = (), . {4ad
and 0)’2

wiD,y> = Tc(y), (4b?>
Sy - qa(y) {4¢D
R
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Hence, the solution of problem (3) is

L

Plxd> = - %2 5>

2k

We start analysis problem (43 by assuming the solution is an
infinite serles in terms of the exterior x-gradient of temperature
at the boundary surface €0,y (9-11]

@ I
wis,y?> = Z C‘.n(x) ——t’:’ 8>
ax

n=o

ﬁo

where Cn(x) is x-dependent coefficlent,

Dividing the above =series in Eq. (6) into even and odd terms
glves

o 4]
azn 62n+x .
wix,yd = Z G o 2"” + Z Q, G0 zn“’ 7>
™ 6‘}{ ™ ne a}{ + L
n=g =0 n=gQ N=Q

By =ome mathematical manipulations, the even terms can be
substituted by

2n
Zn d" T (y>
azw = " 2,-,0 8>
™
) x=0 dy
and the odd Lerms by
azn+1 (_1)n dznq (Y)
—_— - ” Q (9>
2n+1 2n
axn o dy
Concerning the process of finding the above two relations the
reader can refer to reference (9] for further edification.
Substituting Eqs. (82, (92 into Eq. (7> gives
= 2 > z
a* T cy> 1 d*"q <y
wx,yd= ya (x> - = b (x> 10> .
n Zn k n Zn
dy dy
nz=a n=0
where we introduced an(x) = (—1>"Ganx) and bn(x) = 1" Czn Ex).
+

Up to this point, the remalning task is to determine the an(x) and
b Go functions. From the requirement that Eq. 0> exactly

satisfles Egs. (4a)-(4c), these functions are found t.o be expressed by

Vzao<x3= g, V:a“(x)= - anﬂ(x); n = 1,2,3.. 11>

VzboCx)= 0, V:anx)a - b G0 n o= 1,23, 12>

with the boundary conditions



Mansoura Engineering Journal, Vol. I8, No. 3, Sept. 1993 M. 127
13>

a <0>m1, b COOmO, and a Q>=pb (0D=0,

o (o] 4] (2}

b 0dm1, ¥ a (00=20 and ¥V a 0=V b (0d=0; n=1,2,3,... 14>

® Q X O % n X mN

where v:= & 0 and v = d/dx. The solution to £gs. (11> and (12>

sub ject teo boundary conditions {133 and (14> completely determines
the aan) and 'anX) functions which can be expressed by

C-1O"" 15" KT
aan) = Ino1 (15), bn(X) = ——(2—1_,—4_“1—)[—— 156>

From Eqgs. 15>, (16> into Eq. {103 one obtains the solution of
problem (4> as

2. i 2]
1" w AT 1 PIPTCIIL WSS
WX,y = Znot zn K/ TznFl 2" ar>
dy dy
n=o =0

Substituting Egs. 7> and &> imte Eq. (2> gives the general
selution of the main problem <12

g 2 = 2
N 5l d “'rocy) s a “q0<y>
T(x,y)==[T°(y)—R- qOCy)*gk—- ]+ an(x) & ng) —n aB>
dy dy
n= 4 n=1

It is important to note that the terms invelved in the brackets
represent. the one-dimensional soluticon, while the effect of
two-dimepsiconal heat transfer are in the remaining terms. For
insulated condition at the boundary surface <0,y¥>, the terms of
qo(y) disappear from the solution, while for an isothermal surface

condition, the temperature derivative terms will . . vanish. It is
also clear that if there s no heat generation, the =soclution
reduces to that obtained in our previocus work [91L

Finally, the heat flux c<components can be calculated by applying
Fourier’s law on Eq. (18>, This yields :

o [
-15" x277 @ ¢y c-15" %27 4% "q <y>
GLyd> m g ~k — °_ o+ _ ° 19>
L ¢ - 2Zn-131 Zn 2o | zn
dy dy
n=o n=9<o
© 2z 4 g 2n+14 2N+
-1>7 %27 @®™MT ey 1" KM @ o
x,y>m—k —_— 2 + —_— % zod>
qy 24 2Zn>! Zred {Zn+1>1 Zn+d
dy dy
n=g¢ n=a

ifaer ..t versions of the present =olution’ can be obtLained,
referred to the same geometry and coordinates system of Fig. 1, If
tho c.regponding two boundary conditions required, are prescribed
at another boundary smurface rather than the boundary plane <0, V.3,
as it is demonstrated in appendix I3
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3 VALIDITY OF THE METHOD

It. is important to consider test problems; all have known exact
solution, in order to ilustrate the application of the method In
more detall as well to prove its validity. Since such inverse test
problems are not. available to us from Hteratures, therefore, we
use known exact solutions of direct problems to construct test

inverse problems. For this purpose, we consider the following
exact solution :

. . 2 o
Mqi 1~ [X - 2 C cosh A y cos A x {21a>
o 2 L n n n
ql.” 7k

n=0
¢-1>"

wherein C:n =

and N =mC2n +1ro2LD.

\ o LT cosh L »
kel ™

The above solution has been derived ddn reference {121, page

220-221> for direct problem specified by Egq <{1ad with the 4

boundary conditions:

TCL,yd=T0,y> = O and - = = {21b>
x Dy
. I H=0 y=0

Now, by use Eq. (21a> we construct below an inverse problem
corresponding to that described in Fig. 1.
Test problem 1: The given boundary conditions are :

0

T {y>
d - 2) C cosh Xy (22a)

_ - E(O,y) __%
aL®x qL?x

_ oT <22b>
qo(y)- K % x.: o

Egqs. (22a,b} are calculated from Eg. (21ad with x=0. With boundary
condition <22k> the general solution, givem by Egq. <182, reduces

to
@

2 dznTo(y)
+ an(x) _— 22c0

2n

dy

N
X

Nog 3

TCxyd= T <y -

3%

n= 4

dividing the two sides of the above equation by aLz/k ylelds

&
*n

T Sy 2 d T Cv>
Tix,y2> _ "o 1({x [+)
-—[—] + an('x) { } Qzd>

aia qiae ¢ ay®™™ | qL®x

=1
By substituting an(x) from Eq. {153, and TOCyO and its

derivatives from Eq <(22a2 intc the above équat.ion, and after
collecting the common terms, one obtalns

) 2 a4 s
2 Cao ®DT O T ON x>
:’_(zc_,g_) = L[4~ [5] - 2YCcosh A x {1~-—— + 2 - T 4 e <2263
2 2 L n n 2! 4 61
qlL." 7k o

The expanded infinite series in the end of the right-hand-side of
the above equation (s just the cosine function expansion. Thus,
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Eg. <222 in its closed form, is just the same exact solution (21ad.
Since no another direct problem with known exact sclution is
available to wus from references, to be used for constructing
another inverse test problem, therefore, In appendix (II> we have
constructed classical direct problem specified with 4 boundary

conditions, and found its exact solution :
F4

LA, 8 :
Tix,y> = To + x o + p sinh wx cos wy, w=anrl. 23>

With help of the above exact solution we ceonstruct the following
-inverse test problem no. 2.

Test problem 2 : The known boundary conditions are :
To(y)(=T(0,y))=T° (Z4ad and qo(y)/kn—(1+cos wyd (24b>

Under the boundary conditions {(24adthe general solution, given by
Eg. {18, reduces to

* 2
= - x ~gx| 1 —
TR,y [To E A, 3 ] © yaoo 25>

From substituting an(x) and qOCy) frem Egs. 155 and (24b),

respectively, Into Eq. 25> and after collecting the common terms,
one obtains:

:; =1 = Cancd?™
T(x,y> = To + x - . + a—coswyz Ikt 26>
gl
The infinite =suries in the right of Eq {267 i=s  just the

expansion of the hyperbolic sine function. Thus, Eq (26> in
cloged form 1is the same exact scolution (cf Eq. 233> derived in
appendix (II> by 4 conditlens. This proves validity of our method.

Rather two test problems, constructed with use of the above
exact solutbion, are presented iIin appendix (I>, beoth preove the
validity of the method and its Independence on the kind of the
koundary conditions at. the other three boundaries.

4 GONCLUSION

This work is concerned with estimating 2-0 steady temperature
fieid within a planar geometry involving internal heat generation,
by wutilizing the temperature and the exterior heat flux
distributions; both =specified at the same boundary surface as
continuous and differentiable functions of the spatlal ccocordinate
aleng the surface. The resultant general solution iz explicit,
exact and independent on kind of the boundary conditions at the
other three boundary surfaces, The effect of internal heat
generation 1s exactly modeled in the solution. The method may also
be considered of a practical interest, howevér, Lo some steady
heat transfer experiments with a flat plate as the test section,
if two boundary conditions at the same boundary surface, gained
from measurements, rall in one of the following categories:
a-isothermal surface with known heat lux profile
b-insulated surface with known temperature profile
c~both the heat flux and temperalure distributions are known
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APPENDIX <I>

Thi= appendix summarizes rather two different versions of the
present general solution, which are corresponding to case 1 and
case 2 of the posed problem described in Fig. 3. Two test
problems, constructed by use the exact solution of appendix <JXID,
are given to prove validity of both versions.

¥y b4

TL(y)

case 1 case 2 -+
q_<y2
I
T b4 3

To(x) R “'qOCx)

Fig. 3 Other features for the pozed problem

Solution of case 1t

y a Yz dznTc;(x) 1 d r‘qux}
T, y0= [TOC:{)—EqOCXD-ﬁ—- ]+ fn(y) Py 5 ggy)T 27ad
dx 4
m= 4 n=1

wherein

(_1>n yzn (_1)n yzn-ﬂ.
fn(y) Sl oy y (27bD, g‘n(y) S T oy 27>
To(x)=T(x_.0) and q0<x)=qy(x,0), both are continuous and
differentiable functions of x.
Test problem : The known 2 beoundary conditions are:

L3

T _Go= T +x—gr+(sxn.h W w ¢28a>, and q,G0=0 €28b>

The two boundary conditions are calculated by known exact
solution, {23, The problem represents case 1 of Fig 3.
According to  the boundary conditien <28b> the general =olution,
given by Eq. (27a), reduces to

o 2
2 d®"T Go

¥
" + fn(y)

WL &

293

|

BN

T,y = T (xd -
-1 Zn

dx
n= 4

By s=substituting To (x> and fn(y) froem Eqs. {28ad and (27b>,

respectively, into Eq (22>, and after collecting the common
terms, one obtains :

2 e )
X 1 =i -7 (my)
te s Z IR €30
n=0

Y

|

T(x,y)=—'To+ x -

b
st
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The above infinite series is just the cosine function expansion,
thus, Eg. (30> in its closed form, is jJjust the same known exact
solution {of Eg.(23». It 1= noted that the unused boundary
conditions on the surfaces (<0,y> and (L,y> are not homogeneous.
This proves the valldity of the proposed method and its
independent on the kind of the other boundary conditions.

Solution of case 2 :

2n 2n
- d° T {yd d Cyd
Cx-L.2> q z L 4
- - + —_— e~ —_—
Tx,yom [TL(y) el §E(x—L) ] dh(x) Py = ean) oy (31a>
dy dy
nx= 1 mn= %
where
LS < ~1>" ey
dn(){) = W {31b>, Q’n()(> = W 31cd

TL(y)=T(L,y) and qL(y)=qx(L.,y) are continuous functions of y.

Test problem : The known boundary conditions are:
qL? 1
= - q__ _— i
'I'L(y)( T(L,y)) = T°+L T + = sinh wlL cos wy (32ad>
q L
qLCy)C-qx(L,y))-= k[ ;'q?,_k— - cog wy cosh wh - 1} az2b>

This problem represents case 2 of Fig. 3. The general solution is
Eg. (31a>. By substituting from Eqs. (32a) and ((32b> intc Eq.
{31a2>, and after some mathematical abbreviations with collecting
the common terms, we obtain

w0 ==

A 2 2n M
_ qx 1 Cwlx=LX>"" LS mmMmety 7
T(K.’Y)-‘To"'x‘-ZT‘ +;(..OSCIJY slnh OJLZ —‘<2th_- woech wuL CEnFioT J 33>
T n=o

From the right of the above equation, it. can be noted that the
first. series is Jjust tLhe expansion of the hyperbolic cosine
function, and the second series is the expansion of the hyperbolic
sine function. Thus, Eq. (33> can be expressed in the closed form:

2
T(x,y)-Tow—gTﬁh:; COsWY [sinh wl cosh wle-Li+cosh wl sinh w(x—L)]

z
X

Kk

Qe ey

=T + - + 3—0 cog wy ginh wx’ (34>

=]

Eq. €34) is the same exact sclution (cf Eq.(235).
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APPENDIX Q1>

Here, we construct 2-dimensional, steady heat conduction
problem from the direct type, and then derive its solution, This
problem is described by

Z,
iai§+":+—l§l=-o, ¢35a)>
ax dy
: arT
T(O,y)nTo {35b> 0_xl =1 + cos{mry ) {38ed>
®w=D
) o a5d> T w0 35e>
By | Iy |
Y= y=L
where To is constant. Applving the principle of  superposition,

solution of the above problem may be assumed to be
TCx,y2 = Tifx) + Tz(x,y) {3672

Asguming T1(x) iz satisfied the one-dimensional problem

2 »*
dTi, 8 o9, with T <0> aT , 93‘} 37>
2 K 1 a dx Ix=o0
dx
we find that T2(x,y) is satisfied by the problem :
2 z
8 12'z+ ) :z =0, (38a>
ax dy
aT
2 T
- =0 <38b> _— 0 {38
3 |, ayL_ b ©
y=0 =L
T <0,y>=0 <38d> a1z = cosCaysd ¢38ed
z 7 % =0
By separation of variables , the general =solution of problem
{38> may be assumed by
T2(x,y> = X<{xd> ¥Yiyd 390
Substituting Eq. (39> inte Eq. {(38ad) yields
2 2
-t Lax 40>
X d=x Y dy

The two sides of the above equation can be equal, only if both

are equal a constant value, say w?

a*x
z

X & GPymo 41> - W Xm0 <a2>

dy dx

The general sclution, from those of Egs.{41) and (42),is assumed
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ax

- (5024
+
Tz(x,y)- (Cle Cze )(Cs COS Wy + (]4 sin wy? 43>

The boundary condition (38b> with Eq. (43> gives C =0,4 and Eq. 384>
glives 01-—02. Consequently, Eq.<{43> becomes
Tz(x,y) = C sinh wx cos wy 44>

where we introduced C = ancz. Applying the boundary condition <(38c)>
on Eq. €462 yields : 0 =0 sinhwxsinwl, which holds onily 1if

sin r.onl. =0 with w = naA; ne=1,2,3, ... ...,m. Thus, Eq. (44> can be
expressed by an infinite series:
w
T2(x,y)=- Z Gn sinh WX COS W Y] w = naA (432>
n=o

The boundary condition <38e)> with the above cyuUavivn  gives

0
cos fysLl = Z G wcos vy (46>
n o ia)
n=ao

Eq.C46> holds only, if Go =0, Gi = 1/(».:Jt and CI2 =C =.. E' = 0.
Thus, Eq. (44> becomes

T2(x,y) = (ginh WX COS Wyl w; w = "1 47>

The solution of problem <(37) is found :

q X
- + - —_— <4
T, Goo= Tt = G 48>
Substituting Egs. (47> and (48> into Eq. (36> gives
* z
T, yd= 'I‘°+ X - gk—x + {ginh wx CO8 Wyl w; w = 7. 40>
NOMENCLATURES
2
a x>, 4 x>, £ o x~dependent. coefficients, m n
tal sl n pve
b x>, e 0. g OO x~dependent. coefficients, m ni
2l n i}
o {xd x-dependent coefficlents, m”
n
L plate height, m
L plate width, m
k thermal conduct,%vit,y, kW/(m [op
q heat, flux, kW m
q_ Cy> =.q, <0,y>, x-direction heat flux outside
©
t.he boundary surface <0,y), KW/ m>
qL(y) = q <L,y>, wx—direction heat {flux ocutside

t.he boundary surface {L,y>, kW/m
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qOCxD = qux.O), y-direction heat flux outside

the bounaary surface (x,0), KWom>

T temperature, "C

T constant, °¢

(=4

TOCy) = TCO,y), temperature of the boundary

surface C0O,¥2. c®

TLCyD = TCL,y2>, temperature of the boundary

surflace CL,y2>. °c

TOCx) = TC(x,0), temperature of the boundary

surface x, 0>, %¢

M.y cartesian coordinates, m

a volumetric heat generation rate, k‘l'-'/m3

a thermal diffusivity, m2/g

o2 = d%dx?, Laplacian operator, i m?

b

FxD x-dependent function, °c

yl o, Y Cx, yD ~dependent, function. °C
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