ما يو ١٩٠٤

Malala

University : Menoufia

Faculty : Electronic Engineering

Department : Phys. & Eng. Math.

Academic level: First year

Course Name: Engineering Math. (4)

Date : 27/05/2019

Time : 3 Hours (10 AM - 1 PM)

No. of pages: 1

Semester : Second
Full Mark : 50 Marks
Exam : Final Exam

Examiner : Dr. Ali Kandil

Answer all of the following questions:

Question No. 1: (10 Marks)

(1.a) Find the directional derivative of $\phi = xy^2 - 4x^2y + z^2$ at the point (1, -1, 2) in the direction of $6\underline{i} + 2\underline{j} + 3\underline{k}$. Determine the behavior of ϕ in the indicated direction. Then, find the maximum and minimum values of this directional derivative. (5 Marks)

(1.b) If $\underline{F} = (x^2y^3 - z^4)\underline{i} + 4x^5y^2zj - y^4z^6\underline{k}$, find: (5 Marks)

(I) $\operatorname{curl} \underline{F}$ (II) $\operatorname{div} \underline{F}$ (III) $\operatorname{div} \operatorname{curl} \underline{F}$ (IV) If $\phi = \operatorname{div} \underline{F}$, then find $\operatorname{curl} \operatorname{grad} \phi$

Question No. 2: (20 Marks)

(2.a) If the force field $\underline{F} = (2xy + z^3)\underline{i} + x^2j + 3xz^2\underline{k}$, then

- (I) Show that it is a conservative force field.
- (II) Find its scalar potential ϕ .
- (III) Find the work done in moving a body in this field from (1, -2, 1) to (3, 1, 4).
- (IV) Evaluate $\oint_C \underline{F} \cdot d\underline{r}$ where C is any closed curve in the domain of the force field. (5 Marks)
- (2.b) Find the area of the circle $x = a \cos \theta$ and $y = a \sin \theta$ using Green's theorem. (5 Marks)
- (2.c) Evaluate $\iint_S curl \, \underline{F} \cdot \underline{n} \, dS$ where $\underline{F} = (x^2 + y 4)\underline{i} + 3xy\underline{j} + (2xz + z^2)\underline{k}$ and S is the surface of the paraboloid $z = 4 (x^2 + y^2)$ above the xy plane. (5 Marks)
- (2.d) Evaluate $\oiint_S \underline{r} \cdot \underline{n} \, dS$ where S is the spherical surface of radius 2 and centered at origin. (5 Marks)

Question No. 3: (20 Marks)

(3.a) Evaluate each of the following using Gamma function definition: (6 Marks)

(I) $\Gamma\left(-\frac{7}{2}\right)$ (II) $\int_{0}^{1} \frac{dx}{\sqrt{-\ln x}}$ (III) $\int_{0}^{\infty} e^{-x^{3}} dx$

(3.b) Evaluate each of the following using Beta function definition: (9 Marks)

(I) $\int_{0}^{2\pi} \sin^{8}\theta \, d\theta$ (II) $\int_{0}^{\pi/2} \sin^{3}\theta \cos^{2}\theta \, d\theta$ (III) $\int_{0}^{a} y^{4} \sqrt{a^{2} - y^{2}} \, dy$

(3.c) Prove that:

 $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ if you know that $J_p(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \ \Gamma(n+p+1)} \left(\frac{x}{2}\right)^{2n+p}$

End of Questions

Good Luck