Mansoura University

Department: Electronics and Communications Engineering Dept.

Faculty of Engineering

Total Marks: 100 Marks

Course Title: Electromagnetic Fields

Date: Jan, 2013 (First term)

Course Code: COM 9213 Allowed time: (3) hrs Year: 2rd
No. of Pages: (1)

Remarks: (Answer the following questions, assuming any missing data)

Problem number (1) (20 Marks)

a- A uniform line charge of $\rho_1 = 2\pi$ nC/m lies along the y axis, while uniform surface charge densities of + 0.1 and - 0.1 nC/m2 exist on the planes z = 3 m and z = -4 m, respectively. Find E at the point P(1,-7,2). At which point is E the negative of the field at P?

b- Let $E=5x^3a_x-15x^2y$ a_y, find the equation of the streamline that passes through P(4,2,1).

Problem number (2) (20 Marks)

Within the spherical shell, 3 < r < 4 m, the electric flux density is given as $D = 5(r-3)^3$ a_r C/m².

- (a) What is the volume charge density at r = 4 m?
- (b) What is the electric flux density at r=4 m?
- (c) How much electric flux leaves the sphere r=4 m?
- (d) How much charge is contained within the sphere r=4 m?

Problem number (3) (15 Marks)

A spherical region of space of radius R contains a charge Q that is distributed uniformly with constant volume charge density ρ C/m³.

- (a) Determine the stored electrostatic energy.
- (b) Compare it to the energy of two point charges Q that are separated by a distance R.

Problem number (4) (15 Marks)

A dipole with moment $P = 0.1 a_z \mu C.m$ is located at A (1,0,0) in free space and the plane x = 0 is perfectly conducting. Find the potential at the point p (2,0,1).

Problem number (5) (15 Marks)

Find the capacitance and electric field intensity for the region between two concentric right circular cylinders, where V = 0 at $\rho = 1$ mm and V = 150 V at $\rho = 20$ mm.

Problem number (6) (15 Marks)

- a- Write Maxwell equations fields in its integral form.
- b- The point charge Q = 18 nC has a velocity of 5×10^6 m/s in the direction 0.04 a_x -0.05 a_y +0.2 a_z . Calculate the magnitude of the force exerted on the charge by the field:
 - (a) $B = -3 a_x + 4 a_y + 6 a_z mT$.
 - (b) $E = -3 a_x + 4 a_y + 6 a_z \text{ KV/m}.$
 - (c) B and E acting together.

والله الموفق والمستعان

Course Examination Committee

Associ. Prof. Maher Abdelrazzak

Course Coordinator: Associ. Prof. Maher Abdelrazzak