GRAVITY AND MAGNETIC EVALUATION

OF THE DIKE PARAMETERS IN THE NORTHERN WESTERN DESERT; EGYPT

* Geology Department, Faculty of Science, Banha University.
** Geology Department, Faculty of Science, Tanta University.
*** Centrat Lab. Tanta University.

Abstract

In a large number of exploration problems, it is valied to assume a geological structure which is related to dike model. The evaluation of the dike parameters from the gravity and magnetic anomalies were carried out by studying the behaviour of the filter operator of the horizontal and vertical gradients as well as Durantriy. Powell and Koulomzine methods. The dip angle, width, density contrast and susceptibility contrasts of the interperted buried dike bodies as well as the depths to their upper and lower shoulders were determined.

The anomalies along thirty two gravity profiles were interpreted, as a dikes. The dipangle (α) of these dikes measured clockwise from (x) axis ranging from 90° to 30°. The density contrast vary from 0.155 to $0.36 \mathrm{gm} / \mathrm{cm}^{3}$ while the susceptibility ranges from 0.00043 to 0.0064^{8} SL. The depths to the top range from 1.41 to 3.70 Km . and the depth to the bottom ranges from 2.35 to 5.98 Km . while their width ranges from 1.10 to 2.98 Km .

Also, the statistical analysis reveales that there are two major trends to the intrusion activities, namely N-W and N-E that are parallel to the direction of the Suez trend and the Qattara trend, respectively.

INTRODUCTION

The determination of the buried dike-like body parameters from its gravity and magnetic effects attracted the attention of many authors. This was achieved by using : - 1-some characteristic points on the anomaly profile (Heiland, 1940 \& 1943; Jung, 1948 \& $1953 \&$ 1961); this yields uncomplete and unaccurate values

Gravity and magnetic evaluation.....
for the parameters. 2- The curve matching techniques using a least square formulation (Hjelt, 1973 \& 1975), this is ambiguous as long as the depth and / or the density contrasts are not known at first. 3-The spectral analysis of the potential effect of the buried dikes (Sharma et. al., 1970; Sengupta \& Das, 1977; Bhimasankram et. al., 1977; and Nielsen \& Pedersen, 1978), but the reexrraction of the dike parameters from spectral functions of the finite length gravity and magnetic profiles is not sufficiently accurate for different reasons (Regan \& Hinze, 1977; Rao et. al., 1978; and Nielsen \& Pedersen, 1978). 4-a complet analysis of the field profiles (Duranmy et. al., 1963; Powell, 1966; Koulomzine et. al., 1970; Atchuta et. al., (1981). 5-horizontal and vertical gradients using Hilbert-Transform (Nabighian, 1974; Abdel Rahman, 1983 \& 1984; Porma, 1985 and Abdel All, 1988).

The present study deals with precise calculation of the dike parameters from its gravity and magnetic gradients, the modulus of the analytical signal fields, the modified gradients, theirbehaviour of the filter operator with different dip angles as well as Duranmy (1963). Powell (1966) and Koulomzine (1970) methods.

Some statistical representation was carried out for the detection of the direction and magnitude of the geotectonic force causing or affecing the interpreted dike-like structures.

QUANTITATIVE INTERPRETATION TECHNIQUES

The quantitative interpretarion problem of gravity and magnetic data consists essentially in determining all varying parameters such as dips, widths, density contrast susceptibility contrast and depths to top and bottom faces of buried causative bodies. In the study area, the most suitable methods applied were : A) Hilbert Transform Techniques:

The selected profiles on the gravity and magnetic maps, Fig. (5) were taken perpendicular to the strikes of the anomalies. The horizontal gradients were computed by direct differenuarion of the observed gravity and magnetic anomaly profiles. The vertical gradients wer computed by using Hilbert mansform techniques according to the relation:
M. Sharaf, et. al.,

$$
g_{Z}(x)=g_{\pi}(x)^{*}-1 / \pi x
$$

Where :-
$\mathrm{g}_{\mathrm{x}}(\mathrm{x})$ is the horizontal gradient of gravity or magneic anamaly.
$\mathrm{g}_{\mathrm{Z}}(\mathrm{x})$ is the vertical gradient of gravity or magneic anamaly.
The modulus analytical signal of these gradients were calculated according to the relation.

$$
\begin{equation*}
[A(x)]=\left[g_{x}(x)^{2}+g_{2}(x)^{2}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

The functions of $S(x)$ were calculated by dividing each value of $g_{x}(x)$ along the profiie by the corrosponding one on the profile of the modules of the analytical [$\mathrm{A}(\mathrm{x})]$ as :-

$$
\begin{equation*}
S(x)=g_{x}(x) /[A(x)] \tag{3}
\end{equation*}
$$

and the function $C(x)$ calculated by the same manner as :-

$$
C(x)=g_{z}(x) /[A(x)]
$$

Where the S (x) has one vanshing point along the raverse. This function when ploted versus $C(x)$ shows a circular shape. The intersection of this circle with S (x) gives the location of the point at which $S(x)$ equal to $\sin (x)$, so the dip angle (\propto) can be calculated (Abded - Rahman 1984). Figs. (7C, 8C, 9C, 10C,).

The density contrast (f) can be calculated using the function $Q(x)$ in the following equations: -

$$
\begin{equation*}
\int=[\mathrm{A}(\mathrm{x})] / 2 \mathrm{G}, \sin (\alpha) \cdot \mathrm{Q}(\mathrm{x}) \tag{5}
\end{equation*}
$$

Where:

$$
\begin{equation*}
Q(x)=\left[\operatorname{Ln}(\Upsilon 4 . \Upsilon 1 / \Upsilon 3 . \Upsilon 2)^{2}+\left(\psi_{4}-\Psi_{2}-\Psi_{3}+\psi_{1}\right)\right]^{1 / 2} \tag{6}
\end{equation*}
$$

Gravity and magnetic evaluation.......

and
$\left(\psi_{\text {cont. }} / L_{\text {in }}\right.$ cont. $=\psi_{4}-\psi_{2}-\psi_{3}+\psi_{1}=(1-\tan \propto) /(1+\tan \alpha)$

Where :
$Y_{1}, \Upsilon_{2}, Y_{3}, Y_{4} 4$ are the distances to the comers of the dike.
$\Psi_{1}, \Psi_{2}, \Psi_{3}, \Psi_{4}$ are the angles between the corrosponding (T) and the X -axis measured in clockwise direction Fig. (2)

The amplitude function of the analytical signal of the second derivative of the gravity gradients shows four spikes for the position of the buried corners Figs. ($7 \mathrm{E}, 8 \mathrm{E}, 9 \mathrm{E}, 10 \mathrm{E}$). The value of (n) contribution function at the mid-point of the top and bottom of the dike (Yi \& Xi) reduces to $\operatorname{Ln}(\mathrm{Y} 2 / \mathrm{M} 1)$ and $\operatorname{Ln}(\mathrm{Y} 4 . \mathrm{Y} 3)$ respectively. Consequently it can be locate the top and bottom of the dike according to the following equarions : -

$$
\begin{align*}
& \mathrm{ni}=\mathrm{t} / \tan \propto \\
& \mathrm{oi}=\mathrm{t} / \tan \propto \tag{8}
\end{align*}
$$

Where
t is the depth to top of the dike.
T is the depth to bottom of the dike.
\propto is the dip angle of the dike.
ni is the distance between the point (i) and the x -coordinate of the upper corner.
oi is the distance berween the point (0) and the x-coordinate of the lower comers, Figs. (7E, 8E, 9E, 10E).

In the case of vertical dikes, it is characterized by both symmetrical vertical gradient and symmetrical amplitude function of the analytical signal about the origin where the dip angle equal to 90°.

All the evaluaing parameters of the dip angle, density contrast, the depths to
M. Sharaf, et. al.,
top (t) and bottom (T) have been processed through a computer porgram, which include the whole sequences of graphical and computional relations.

In the area undeŕ study; Fig (1); the Bouguer anomalies, Fig (3), was analysed. A total of (118) tectonic structures were traced; Fig. (4). A gravity profiles were taken in a perpendicular direction to these strucures. The horizontal and vertical gradients of each profile were calculated and polted versus each other. A total of (32) buried dikes were identified; Fig. (5). They were indicated by an ellipsoidal relation figures, where their long axes makes an angle with the g_{2} (x) axes equal to the dip angle of the dike plane while the normalized gradients, when plotted one against other, give a circular shape for the dikes with any dip angle; Figs. (7B, 8B, 9B, 10B). At the same location of the gravity interpreted dikes; a profiles were taken on the magnetic map Fig. (6). Twinty eight profiles from thirty two were interpreted as dike structures. The dip angles are directly computed and plotred. Accordingly, twinty one of these dikes were identified as inclined dikes, and eleven as vertical dikes. Concequently the depths to the upper and lower surfaces as well as the densiry conrast with the surrounding rocks were calculated. Table (1) represents all the calculated parameters. Figs. (7, 8, 9, 10) show plots of the different steps of the evaluting procedure along profiles
B) Koulomzine er. al., (1970) method : -

For the direct interpretation of the magnetic anomalies caused by inclined dikes of infinite lingth, where the field profiles is decomposed into its symmetrical and antisymmetrical components, which are analysed seperatly.

The determination of the depth and width of these inclind dikes deponds on the position of their centers, which can be obtained from the graphical, computarional, and the slope techniques of Lamontagne (1970); Fig. (11).

Koulomzine et. al., (1970) gave the following formulae for the determination of the depth and width of the dike structures.

$$
\begin{equation*}
\text { Depth }(\mathrm{h})=\mathrm{x}_{1 / 2} \cdot\left[\left(\mathrm{Cl}^{2}-1\right) / 2\right] . \tag{8}
\end{equation*}
$$

Gravity and magnetic evaluation...
Width $\left.\left.(W)=2 x_{1 / 2} \cdot\left[4-\left(C l^{2}-1\right)^{2}\right)^{1 / 2}\right) / 2\right]$

Where (Cl), being a quotient, is scalar and is independent of any measurement units, and equal $X_{1 / 2} / X_{3 / 4}$; where $X_{1 / 2}$ and $X_{3 / 4}$ are the distances between the point of the half and three-quarters maximum values of the symmetrical components.
or.

Depth $(\mathrm{h})=2 \mathrm{x}_{\mathrm{e}} \cdot\left[(1-U)^{2} / 4 U\right]$
Width $\left.\left.(w)=2 x_{e} \cdot\left[4 U^{2}-(1-U)^{4}\right)^{1 / 2}\right) / 2 U\right]$

Where (U) being a quarient, is scalar and is independent of any measurement units, and equal $X_{e /} X_{e / 2}, X_{e}$ and $X_{e i} 2$ are the maximum and half values of the antisymmetrical components.

The location of the centers ($\mathrm{X}-0$) of the profiles have been established by the Lamontagne method (1970) and Powell's method (1966). Fig. (11). Then the parameters of all interpreted dykes along (21) profiles are represented in Tabel (1)

C) Powell's method (1966) :

This method determines the minimum adjusment needed to give an observed profile that symmetry shown by all model dike, and vertical fault-step, anomalies. In this method the profile can be resolved into its odd and even components. It was applied to the previously interpreted profiles and the results are represented in Table (1), and Fig. (12).
D) Durantny et. al., (1963) method :

It was introduced by Duranty and M.Karsin (1963) using the two components Z (vertical) and h (horizontal) of the earth's magnetic field. Further development was made by El-Diasty (1969) using the total force T.

M. Sharaf, et. al.,

The method satisfies the general case of a dyke which is magnetically homogeneous and polarized in any direction. To apply this method the symmetrical curve along profiles was computed and the maximum magnetic intensity value ($\mathrm{Y} \max$) was determined. if Y 2 was the abscissa of the point with the value of $Y=1 / 4 \mathrm{max}$, and $Y 1$ was the adscissa of the point with value of Y $={ }_{i / 2}$ Ymax, the depth (h) and width (2 h) of this dike can be computed from the following equations :-

$$
\begin{equation*}
\mathrm{h}= \pm\left(\mathrm{Y}^{2}-\mathrm{Y} 1^{2}\right) /(2 \mathrm{Y} 1) \quad \mathrm{b}= \pm\left(\mathrm{Y} 1^{2}-\mathrm{h}^{2}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

According to Diasty (1969) an apporximation value of the susceptibility contrast between the rock body and the surrounding rocks (taking no account of remanent magnetization) can be calculated as follows : -

The anamaly for a hemispherical body $=2 \mathrm{II} \mathrm{Y}$
hence

$$
\begin{equation*}
2 \Pi Y=\Delta T(180 / \varnothing) \tag{8}
\end{equation*}
$$

where
\emptyset is the space angle of the body and $Y=\Delta K Z_{0}$; and Z_{0} represents the vertical component of the earth's magnetic field, $\Delta \mathrm{K}$ is the susceptibility contrast, then 2 II $\Delta \mathrm{KZ}_{\mathrm{O}}=\Delta \mathrm{T}(180 / \varnothing)$ Knowing b and h then the space angle (Ø) of the body $=2 \arctan \mathrm{~b} / \mathrm{h}$ (Ell-Diasty 1969).

According to Ahmed et. al., (1980), the vertical component of the earth's magnetic field $\left(\mathrm{Z}_{\mathrm{O}}\right)$ in the study area is 29000 net. Then $\Delta \mathrm{K}=(\Delta \mathrm{T}(180 / \emptyset) /$ $\left(2 \Pi Z_{0}\right.$) where $\Delta T=1 / 2 \Delta \mathrm{Tmax}$. The parameters of the interpreted dykes along the magnetic profiles are represented in Table (1) and Fig. (13).

E) Statistical Analysis.

The trend analysis of the interpreted anomalies was carried out. The major trends of the evaluated dikes are represented in Table (2). They are represented graphically, as shown in Fig. (14), to give rise the relationship between the

Gravity and magnetic evaluation........
number of the major tends and their depths.

RESULTS

The application of the above methods to the selected profiles of the gravity and magnetic maps of the area under study lead to the following :-

1 - The area may be affected by intusions represented by inclined and nearly vertical dykes having the NE - SW trend perpendicular to twinty three profiles and the NW - SE direction perpendicular to nine profiles; Fig. (14)

2 - The dip angle of the inclined dikes range between 30° and $69^{\circ}, 87$, the density contast between the dikes and the surrounding rocks range between 1.55 and $0.36 \mathrm{gm} / \mathrm{cm}^{3}$ while the susceptibility contrast range between 0.00043 and 0.00648 SL. The depths to their upper shoulders range between 1.41 and3.70 Km . while the depths to lower shoulders range between 2.35 and 5.98 Km . The width of the dikes range between 1.10 and 2.98 Km .

3- The statistical analysis reveals that there are two major trends of intrusion, namely, N-E and N-W that are parallel to the directions of the Suez trend and the Qatrara trend respectively.

4- It can be seen from Fig. (14) that.the depth of the maximum number of anomalies representing the $\mathrm{N}-\mathrm{E}$ trend is less deeper than that representing the N W trend. This leads to the conclusion that the tectonic phase, which was responsible for the formation of the $\mathrm{N}-\mathrm{W}$ structural trend is older than that which was responsible for the formation of the structural pattern having the $\mathrm{N}-\mathrm{E}$ trend. Such tectonic phases are probabaly due to the rejuvenation of the tectonic activities occuring in the Pre- Cambrian.

REFERENCES

Abdel All, M., H., (1988): Coordinative study of geophysical methods for revealing subsurface geological features of probable economic interest within the Western portion of Sinai peninsula, PH. D Thesis geology deparment, Faculty of Science, Ain Shams Univ.

Abdel Rahman, M.M.A. (1984): Improved technique for rapid interpretation of gravity anomalies caused by geologic contacts E.G.S. Proc. 3rd AnnM., March, PP. 1-15.
........................... (1983): Two-dimensional geologic structures in relation to relation Figures of their gravity anomalies E.G.S. Proc. 2nd Ann. M., March, PP., 203-217.

Ahmed, F.M.; Fahim, M.; Deebes. H., and Gouda, A. (1980): Maps of the Absolute Geomagnetic Field Component of the Eastern Desert of Egypt Reduced to Epoch 1977. Helwan nstitute of Astronomy and Geophysics Bull. No. 218

Atchuta Rao, D.; Ram 'Babu, H.V., \& Sanker Narayan, P.V., (1980): Relationship of magnetic anomalies due to subsurface features and the interpretion of sloping contacts: Geophysics, Vol., 45, P32-36.

Bhimasankram, V.L.S.; Nagendra, R., and Sashagiri Rao, S. (1977): Interpretation of Gravity Anomalies due to Finite Inclined Dikes using. Fourier Transformation, Geophysics, Vol., 42, No. 1, PP. 51-57.

Diasty, M.E. (1969): The Aeromagnetic Map of the Delta Area and the Interpretation of the Geophysical Data, M. Sc. Thesis, Fac. Sc. Alexandria Univ.

Durantry, S., and Krs, M (1963): Contribution to the Quantitavie Interpretation of Anomalies of Low Frequency Electromagnetic Fields. Sbornik, Geologickgchved Uzita, Geofyzika, Fada. UG. SV. 2.

Heiland, C.A. (1940): Geophysical Exploration. New York, Prentice Hall.
(1943): A rapid Method for measuring the profile components of honizontal and vertical gradients. Geophysics, Vol. 8; P. 119-133.

Hjelt, S.E. (1973): Experiences with Automatic Magnetic Interpretation using the thick plate Model. Geophsical prospecting, Vol. 21 P. 243 265.
(1975): On the possibilities of determinating Dip in magnetic Interpretation with infinitly Deep Model. Geophysical prospecting, Vol, 23, PP., 323-334.

Iung, K. (1961): Schwerekraftverfahren in der Angewandeten Physik, Akadimische Verlagageselschaft. Leibzig.
................. (1953): Someremarks on the interpretion of gravitional and magnetic anomalies. Geophysics Pros., Vol. 1, No. 1, PP. 29-35.
(1948): Direkte Methoden Zn Betimming plattenformiger Storungskorper Aus Ihren Erdmagnetischen Anomalien. Geolfisica Pure Applicate. Bd. 11, S. 2-67.

Gravity and magnetic evaluation

Koulomizine, Th.; Lamontage, Y. and Nadeau, A. (1970): New methods for the direct interpretation of magnetic anomalies Caused by Inclined Dikes of infinite Length, Geophysics, Vol. 35, P. 812.

Nielsen, J.O., and Pederson, L.B., (1978): Inclined dikes in Wave Number Domain, Pure and Applied Geophysics, Vol. 47, PP. 761-771.

Poorna, C., (1985): A gradient analysis based on simplified inversion strategyfor the magneric anomaly of an inclined and infinite thick dike. Geophysics, Vol. 50, No. 7, PP., 1179-1182

Powell, D.W. (1966): Fitring observed profiles to a Magnetized Dyke for FaultStep Model. Geophysi Pros., Vol. 15, No. 2, P. 208-220.

Rao, B.S.R. Radhakrishna Murthy, I.V., and Bhaskara Rao, D., (1978): Interpretion of magnetic anomalies with Fourier transforms, employing and corrections, J. Geophysic, Vol. 44, PP. 257-272.

Regan, R.D., and Hinze, W.I., (1977): The effect of finite data length in the Spectral analysis of ideal gravity anomalies, Geophysics, Vol. 41, PP. 44-45.

Sengupta, S., Das, S. (1977): Interpretation of Gravitationali effect of two Dimensional Dike by Fourier Transform. Geopxploration, Vol., 15, P. 251-261.

Sharma, B., Gelbert, L.P. and Gill, D.E., (1970): Interpretation of gravity anomalies of Dike like Bodies by Fourrier-Transformation. Gan., J., Earth. Sci, Vol. 7, PP. 5-12.

M. Sharaf, et. al..

Table (1): The interpretd dike parameters of the gravity profiles.

Pronil No.	Type of Dike	Parameters calculated using Amplitude Function of the Analytical Signal / A (x)/					
		Dip Angle	Dansity Contrast	ψ Contribut	Depth to Top	Depth to Bottom	Width of Dik
G (1)	Vertical	90.000	0.331	8.432	3.50	5.63	2.30
G (2)	Inclined	35.290	0.260	- 11.653	2.53	3.75	2.76
G (3)	Vertical	90.000	0.226	- 10.090	2.50	4.98	1.80
G (4)	Inclined	46.010	0.251	6.472	2.37	3.94	1.70
G (5)	Inclined.	31.180	0.333	7.111	2.15	3.50	1.14
G (6)	Vertical	-90.000	0.262	6.218	2.14	3.13	1.34
$G(7)$	Vertical	90.000	0.242	5.516	1.88	3.31	1.72
G (8)	Inclined	48.191	0.218	8.321	1.91	2.18	1.83
G (9)	Inclined	30.000	0.250	12.637	1.74	3.75	1.90
G (10)	Inclined	35.080	0.310	10.211	1.96	2.85	1.81
G (11)	Inclined	38.916	0.281	8.635	1.51	2.44	1.65
G (12)	Inclined	48.631	0.262	7.384	2.10	4.62	1.88
G (13)	Inclined	57.213	0.238	6.814	2.16	3.10	2.01
G (14)	Verical	90.000	0.249	9.250	2.41	5.35	2.31
G (15)	Vertical	90.000	0.250	6.143	3.88	5.75	2.11
G (16)	Inclined	65.213	0.230	7.190	2.95	3.81	1.55
G (17)	Inclined	57.311	0.252	6.511	2.88	3.64	1.80
G(18)	Verrical	90.000	0.144	10.917	1.70	2.31	1.24
G (19)	Verrical	90.000	0.244	8.332	1.86	4.54	2.90
G (20)	Inclined	44.180	0.255	7.981	2.43	3.11	2.61
G (21)	Verrical	90.090	0.256	8.292	2.83	4.15	2.11
G (22)	Vertical	90.000	0.225	7.783	1.90	4.52	1.52
G (23)	Inclined	38.661	0.228	8.152	1.73	2.30	1.26
G (24)	Inclined	45.858	0.236	8.663	1.81	2.43	1.66
G (25)	Inclined	21.917	0.261	7.525	2.10	3.18	2.21
G (26)	Inclined	50.331	0.256	9.175	3.11	3.97	1.33
G (27)	Vertical	90.000	0.355	10.056	1.14	4.40	2.57
G (28)	Inclined	37.271	0.248	4.818	1.56	2.71	1.23
G (29)	inclined	34.382	0.261	8.141	2.31	3.16	1.64
G (30)	Inclined	43.501	0.276	6.507	2.83	5.78	2.04
G (31)	Inclined	47.167	0.155	6.186	2.85	5.63	2.76
G (32)	Inclined	53.816	0.215	7.213	2.51	3.68	1.66

Table (2); The interpretd dike parameters of the magnetic profiles.

Interpreted parameters of the Dikes Using										Interpreted parameters of the Dikes Using					
	Amplinde Function of Analytical Signal/A $(x) /$						Poweil's Method			Durantny Method			Koulomzine Method		
No. Dike	Dip Anglo	Densily Contrast	ψ Contribution	Deph to Top	Deptito Bullom	Widu of Dike	Deph to Top	Widh	Deph 10 Top	Widh	The Space angle	Sucep. Contrast	Deph to Top	Widh of Dike	Dip Angle
$\bar{M}(1)$ Vertical	90.000	0.234	6.321	3.70	5.85	2.40	3.41	2.25	3.25	2.21	37.556	. 00320			
M (2) Inclined	35.290	0.361	8.080	2.80	3.98	2.88	2.48	2.19	2.65	2.43	49.098	. 00276	2.60	2.31	38.15
M (3) Verical	90.000	0.322	9.321	2.85	5.25	1.90	2.45	1.71	2.33	1.58	37.459	. 00132			
M (4) Inclined	47.167	0.155	6.186	2.85	5.83	2.76	2.30	1.65	2.21	1.54	38.418	. 00257	2.28	1.66	48.80
M(5) Inclined	31.180	0.213	6.181	2.18	3.75	1.18	2.18	1.10	2.01	1.13	28.742	. 00215	2.13	1.11	37.11
M(6) Yerical	90.000	0.252	8.316	2.16	3.60	1.45	2.09	1.28	1.96	1.23	34.841	. 00319	-.	--	,
M (7) Vertical	90.000	0.324	7.134	1.95	3.83	1.81	1.75	1.69	1.68	1.65	52.308	. 00118	\cdots	--	--
M (8) Inclined	48.191	0.331	4.611	1.99	2.39	1.84	1.88	1.75	1.75	1.71	52.077	. 00118	1.71	1.80	51.33
M (9) Inclined	30.000	0.260	0.384	1.83	3.88	1.99	1.78	1.81	1.61	1.76	57.320	. 00108	1.59	1.88	36.18
M (10) Inclined	35.080	0.220	9.643	2.01	2.91	1.91	1.88	1.73	1.81	1.62	48.218	. 00128	1.91	1.78	38.31
M (11) Inclined	38.916	0.353	9.717	1.68	2.62	1.73	1.78	1.55	1.44,	1.53	55.950	. 00220	1.39	1.60	42.16
M (12) Inclined	48.631	0.322	8.432	2.17	4.98	1.96	2.09	1.79	1.96	1.76	48.358	. 00255	2.02	1.81	51.86
M (13) Inclined	57.213	0.341	8.416	2.23	3.44	2.15	2.10	1.98	1.98	1.91	51.490	. 00241	2.00	i. 89	60.76
M (14) Vertical	90.000	0.329	9.158	2.61	5.72	2.45	2.51	2.10	2.37	2.02	46.163	. 000134	2.0	1.8	6.76
M (15) Vertical	90.000	0.351	8.231	365	5.93	2.22	3.80	2.01	3.71	1.94	29.304	. 00211	-	--	
M (16) Inclined	65.213	0.338	6.240	0.10	3.97	1.63	2.86	1.48	2.81	1.41	28.168	. 00263	2.88	1.49	69.87
M (17) Inclined	57.311	0.268	7.151	3.41	3.86	1.92	2.78	1.77	2.73	1.75	35.542	. 00208	2.81	1.73	62.80
M (18) Yerical	90.000	0.264	1.181	1.41	2.64	1.31	1.83	1.35	1.57	1.12	39.261	. 00252	2.81	1.3	62.8
M (19) Verical	90.000	0.341	9.441	1.99	4.73	2.98	1.79	2.81	1.63	2.70	79.264	. 00125	-	-	--
M (20) Inclined	44.180	0.352	8.776	2.60	3.32	2.73	2.50	2.66	2.31	2.51	57.029	. 00043	2.38	2.56	48.13
M (21) Yerical	90.000	0.365	6.541	2.91	4.19	2.21	2.79	2.02	2.71	1.96	39.762	. 00093		2.	48.13
M (22) Vertical	90.000	0.255	- 7.783	1.90	4.42	2.15	1.86	1.43	1.65	1.30	45.387	. 00544			
M (23) Inclined	38.661	0,221	7.321	1.88	2.43	1.31	1.68	1.24	1.61	1.10	37.721	. 00327	1.64	1.10	42.14
M (24) Vertical	90.000	0.351	1.121	1.16	4.55	2.60	1.11	2.41	1.05	2.30	95.205	. 00648			42.14
M (25) luclined	37.271	0.281	5.489	1.68	3.07	1.30	1.48	1.18	1.40	1.11	43.249	. 00142	1.44	1.10	43.10
M (26) Inclined	34.382	0.268	9.315	2.45	3.25	1.71	2.21	1.58	2.10	1.53	40.031	. 00154	2.25	1.54	45.81
M (27) Inclined	43.501	0.255	8.661	2.96	5.98	2.15	2.88	2.11	2.71	1.98	40.135	. 00307	2.75	1.99	49.16
M (28) Inclined	47.167	0.210	7.818	2.98	5.77	2.83	2.91	2.80	2.72	2.66	52.114	. 00236	2.77	2.68	51.54

M. Sharaf, et. al.,

Fig. (12): Interpretation of dike geometry from even component of a djusted profilcs "M4" and "M27".

Fig. (13): Analysis of the magnetic anomaly curve "M4" and "M27".

Fig. (14): Relation between No. of anomalies of the major trends of the interpreted dikes and their depths.

Table (3): Direction of major trend and their number of anomalies represented in the area

Direction of the major tend	Number of anomalies
$N-W$	9
$N-E$	23

Gravity and magnetic evaluation....-.

Fig. (1) : Incation map of the study area

Fig. (2) The gravity effect of te dike and its geometry model
M. Sharaf, et.al,

Fig. (3) : Bouguer gravity map of the area undersudy,
gravity map of the G. 1986)

Fig. (4) : Tectonic pattern derived from bouguer gravity map

Gravity and magnetic evaluation:........

E1G.(6):TOTAL HAGKETIC INTENSITY MAP OE THE AREA UKDER STUDY (AFTER G.P.C.2986)
M. Sharaf, et. al.,

Fig. (7) : (A) The graviry effect along profile G(4), (B) Warner's types, (C) dip angle deternination, (D\&E) Inteppresed parameter of Inciined dike

Gravity and magnetic evaluation........

fig. (8) : (A) The graviry effect along profile M(4), (B) Warner's:types, (C) dip angle determination, (D\&E) Interpreted parameter of Inclined dike

Fig. (9): : (A) The gravity effectalong profile $G(27)$ (B) watner's types,
(C) dip angle determi nation; (D\&E) niterpeeted parameter of Verical dike

Gravity and magnetic evaluation........

Fig. (10): (A) The gravity effect along profile M(27); (B) Warner's types, (C) dip angle determination, (D\&E) Interpreted parameter of Vertical dike

M. Sharaf, et. al.,

Fig. (13) : Analysis of the magretic anomaly curve " M_{4} " and " M_{27} "

Fig. (14) : Relation between no. of anomalies of the major trends of the interpreted dikes and their depths.

Gravity and magnetic evaluation...

فهى شهال الصمراء الغزيبية - هصر

يتناول هذا البحث دراسة الغرائب التثاقلية وألمنناطيسية وتنسيرها للتعرف على

