Menoufiya University Faculty of Engineering Shebin El-Kom Des. & Prod. Eng. Department First Semester Examination 2014-2015

Subject: Math. (3) Code: BES 213

Time Allowed: 3 hours
Total Marks: 100 marks
Date of Exam: 27/1/2016

Solve the Following Questions (Question Number-1):(35 Marks)

- (A) Verify Stokes' theorem for $\overline{F} = \left(x^3 + \frac{yz^2}{2}\right)\overline{i} + \left(y^2 + \frac{xz^2}{2}\right)\overline{j} + (xyz)\overline{k}$ where S is surface of the cube x = 0, y = 0, z = 0, x = 3, y = 3, z = 3 above the y-z plane.
- (B) Find the unit normal vector and the surface area of $z = \sqrt{x^2 + y^2}$ over the region D bounded by $0 \le x \le 4$, $1 \le x \le 6$.

(C) - If
$$\Gamma(1.6) = 0.8935$$
 find $\Gamma(2.6)$, $\Gamma(-1.4)$, $\int_{0}^{2} (4-x^{2})^{3/2} dy$ and $\int_{0}^{\infty} y^{\frac{1}{2}} e^{-y^{3}} dy$.

- Prove that
$$\beta(m,n) = 2\int_{0}^{\frac{\pi}{2}} (\sin\theta)^{2m-1} (\cos\theta)^{2m-1} d\theta$$
, and evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cot d\theta}$

(Question Number-2):(25 Marks)

(A) If
$$\phi = \frac{1}{|x\bar{i} + y\bar{j} + z\bar{k}|}$$
, prove that $grad \phi = -\frac{\bar{r}}{r^3}$.

- (B) Show that $\bar{a} \cdot (\bar{b} \times \bar{c})$ is in absolute value equal to the volume of a parallelepiped with sides \bar{a} , \bar{b} , and \bar{c} .
- (C) If N(x,y) is defined and continuous function having continuous first partial derivatives in a closed region R bounded by C, prove that $\iint_R \frac{\partial N}{\partial x} dy dx = \oint_C N(x,y) dy$. Why Green's theorem not applicable to the integral $\oint_C \frac{y}{x^2+y^2} dx \frac{x}{x^2+y^2} dy$ where C is the ellipse $x^2+4y^2=4$?.

(Question Number-3):(40 Marks)

- (A) Show that $\overline{F}(x,y,z) = (2xy + z^3)\overline{i} + x^2\overline{j} + 3xz^2\overline{k}$ is conservative force field and find the scalar potential and find the work done in moving an object in the field from (1,-2,1) to (3,1,4).
- (B) Verify divergence theorem for $\overline{F} = 2x^2y\overline{i} y^2\overline{j} + 4xz^2\overline{k}$ taken over the region in the first octant bounded by $y^2 + z^2 = 9$ x = 1.
- (C) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 z = 3$ at the point (1,1,1).
- (D) By the simplex method, find x_1 and x_2 that maximize the sum $x_1 + x_2$ subject to the constraints $x_1 \ge 0$, $x_2 \ge 0$, and

$$x_1 + 2x_2 \le 4$$

 $4x_1 + 2x_2 \le 12$.
 $-x_1 + x_2 \le 1$

Dr. M.A. El-Shorbagy With my best wishes This exam contributes " by measuring in achieving Programme Academic Standards according to NARS Q1-B,C Q2, Q3-D 03 Q2-B, Q3-A Q1-A **Question Number** c-1-1 a-1-1, a-1-2, a-1-3 b-3-1 b-7-1 Skills Knowledge & Understanding Skills Intellectual Skills **Professional Skills**