Menoufia University

Faculty of Engineering, Shebin El-Kom

Civil Engineering Department

Second Semester Examination, 2019-2020

Date of Exam: 19/8/2020

Subject: High Rise Buildings

المنشآت الخرسانية العالية

Code: CVE 613

Time Allowed: 3 hours Total Marks: 100

Tables, Charts and Codes are Allowed Any data not given can be reasonably assumed.

Question 1: [50 % of the Total Mark]

- I- Explain with neat sketches whenever possible the following items:
 - (a) Outrigger and Belt wall system.
 - (b) Confined concrete.
 - (c) soft stories.
 - (d) Types of deformations.
 - (e) Vertical setbacks.

[10%]

- II Explain with neat sketches the main common structural systems for resisting the lateral loads due to wind and earthquakes for tall buildings.
 - If the height of the building is more than 60 stories, suggest three suitable systems for this building. [10%]
- III- The following sketches in Figure (1) represent sectional elevations of three <u>not</u> preferable cases of buildings for resisting seismic loads. Explain the previous statement and with neat sketches suggest how to improve each case. [10%]

IV- Why are the following plans in Figure (2) not recommended for high rise buildings? Explain how you can correct the systems to be executed. [10%]

V – How can engineers reduce the effect of the earthquakes on high-rise buildings by positive and negative control methods? [10%]

Question 2: [50 % of the Total Mark]

Figure (3) shows a typical plan *abcd* of 14-story Office building. The dimension is 15 x 18 m. The height of each floor is 3m. The building is located in Cairo, and rested on a stiff clay. Assume the average total dead load is $1.0~t/m^2$ and LL= $0.3~t/m^2$. Thicknesses of all shear walls and the interior core are 0.3~m and connecting beams between coupled shear walls are 0.3x0.7m. $f_{cu}=300~kg/cm^2$ and steel 36/52

It is required to:

- 1- Calculate the equivalent static lateral load on each floor due to the wind and earthquake in the shown direction only.
- 2- Calculate the base shear and the overturning moment and check the stability of the building due to earthquake only.
- 3- Calculate the center of mass and the center of rigidity of the building.
- 4- Calculate the shear, normal forces and moments due to earthquake for the coupled shear wall at axis A-A.
- 5- Make complete design* the connecting beam at axis A-A of the coupled shear wall at the seventh floor.

• يسمح باستخدام كود الخرسانة وكود الأحمال وجداول ومنحنيات الخرسانة المسلحة

[•] يسمح باستخدام كتاب شاكر البحيرى.

[•] Examiner: Prof. Nageh N. Meleka, Professor of Reinforced Concrete (Best wishes)