OBSERVATION ON THE SUCCESSION AND PERIODICITY OF SOIL ALGAE IN

 CULTIVATED LANDS

 CULTIVATED LANDS}

*Ghanem, N.A.E.; **El-ayouty, E.Y., and *El-Gamal, A.D

Department of Botany, Faculty of Science, Alazhar University*
Cairo university**, Egypt
ABSTRACT

Little is known about the succession and periodicity of soil algae. So, the present investigation is carried out to study the succession fluctuations and periodicity of soil algae of cultivated land in ElKhanka district, Qaliolbyia governorate.

The study showed that algal folra for this region consists of 33 species of Cyanobactria (blue green algae) and 4 species of green algae. The results revealed the ranges of monthly variations of moisture and nutrient coment in soil samples. Organic carbon, carbonates and total nitrogen in the soil crust seemed to be major controlling factors offecting the fluctuations of the isolated algae.

INTRODUCTION

Some phycologists investigated the types, abundance and frequency of soil algae (Chantanachat and Bold, 1962: Friedmann, 1964; Friedmann et al., 1967; Evenari et al., 1975 and komaromy, 1976). They reported that edaphic factors and soil characters togther
with some specific features within the algal organisms themselves constitute the main factors responsible for the existence of the algae in the soils.

In Egypt, the study of soil algal flora has been scarcely studied: El-Ayouty and Ayyad (1972) in a wheat field in the Delta; kobbia \& El-Batanony (1975) in wadi El-Naturoun; Salama \& kobbia (1982) in Lybian deserts; kobbia (1983) on rhizospheric algae; kobbia (1985) in gravel and lime stone deserts of Cairo-Suez road; kobbia \& Shabana (1988) on soil algal flora of Egyptian Bahariya Oasis.

As far as we aware, the periodicity of soil algae are scarce. So, we shall discuss our results in the light of the available literatures conceming the periodicity of water algae.

The distribution, growth, and periodicity of algal flora in a wide variety of ecological situations in Egypt, have recieved comparatively little attention by a few workers (Nosseir \& Abou El-Kheir, 1970, and Nosseir \& Abou El-Kheir, 1972). Also the factors controlling the distributions and periodicity of fresh water algae, were discussed by some investigators : organic nutrients (Ketchum, 1951); Oxygen concentration in water (Rao, 1955); Dissolved nutrients in water (Abou El-Kheir \& El-shimi, 1973); water temperature (El-Hag \& Fogg. 1986), and organic cabon \& carbonates (kobbia \& Shabana, 1988).

Ghanem, N.A.E.: El-ayouty, E.Y., And El-Gamal, A..D.......

Hart (1935) stated that the general pattern of seasonal fluctuation is influenced by the physical and chemical factors of light, temperature, and availability of nutrient salts mainly nitrate and phosphate. Finally, Lund\& Talling (1957) stated that there is no ultimate factor responsible for algal mass productivity and periodicity. But some workers added that seasonal flutuation af algae may be due to the sum of the nutritional and environmental conditions (Fritsch, 1906; Patrick, 1945; Jorgensen, 1957; and Nosseir \& Abou El-Kheir, 1970 a, b, c, \&1972).

The main object of this work is the study of sucession, fluctuation and periodicity of soil algae inhabiting the soil crust under the cultivated crops and trees in El-Khanka district.

MATERIALS AND METHODS

Five fields situated in El-Khanka district, Qaliobyia governorate, were chosen for this study. These fields were cultivated with Psidium guajava (Guava), Corchorus Olitorius (Jew's mallow), Trifolium alexandrinum (Egyptian clover), Zea mays (Maize), Triticum vulgare (wheat), and Hibiscus esculentus (Okra). Crop rotation was followed in the third (Trifolium/ Zeal Trifolium) and the fourth (Triticum/ Zeal Triticum) fields. The two fields were left uncultivated during November, while the fifth field was left uncultivated during July, 1988- January, 1989 period.

Soil Analysis: Samples of soil curst (each was a composite of

Succession and periodicity of soil algae .

4 randum samples) were transferred immidiately to the laboratory for determination of soil moisture content according to Piper (1950). Samples were air dried and stored in plastic bags.

Chemical analysis: The contents of total nitrogen, exchangeable ammonium and nitrate (Black et al., 1965), total organic carbon (Piper, 1950) were determined. Measurements of soil pH and carbonates\& bicarbonates determination were carried out as described by Jackson (1977).

Isolation of algae: The methods used by El-Ayouty and Ayyad (1972) were applied on the dry samples for cultivation and isolation of algae. The algal taxa were identified according to the standard identification methods.

RESULTS AND OBSERVATIONS

Results presented in Table 1 indicated that soil reaction in all the studied fields is alkaline. Data obtained also revealed that the maximum moisture content of soil sample was recorded for field No. 1 (19.19%) durinh Dec. - Feb. period under Psidium gujava cultivation, whereas the minimum content was recorded during Mar.- Jan period in field No 2 under Corchorus olitorius culativation. The total nitrogen content of soil sample in field No. 1 (during Jan. -Nov. period) exceeded that of the other fields while in field No. 3 (during Nov.- Dec. period) it represents the lowest one. The highest value of nitrates ($51 \mathrm{Kg} / \mathrm{ha}$) was attained in
Ghanem，N．A．E．；El－ayouty，E．Y．，And El－Gamal，A．D．．．．．．．
Table（1）Ranges of monthly variations of moisture content（M．C．\％），total nitrogen，nitrates，ammonia nitrogen，organic carbon，carbonates and bicarbonates（kg／ha）．

	Mar－Jun	$2.83-6.10$	$476-865$	$9-51$	$0.27-0.54$	$793-1430$	$1697-1983$	$129-189$
$8.43-8.71$								
1	Jul－Nov．	$3.60-10.34$	$540-1100$	$7-21$	$0.30-0.72$	$640-1631$	$1432-3504$	$116-278$
$8.29-9.62$								
	Dec－Feb	$11.12-19.19$	$276-1000$	$5-25$	$0.22-0.45$	$591-1003$	$1120-1540$	$24-116$

2 | | Jul－Nov． | $4.20-13.16$ | $316-584$ | $6-11$ | $0.31-0.49$ | $491-975$ | $1131-1417$ | $410-450$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllll}210-500 & 4-8 & 0.19-0.33 & 400-1100 & 1230-1410 & 480-512 & 8.49-8.66\end{array}$

$\begin{array}{llll}816-1417 & 1755-2321 & 278-377 & 8.34-8.62\end{array}$ | 0 |
| :--- |
| 0 |
| 1 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| \vdots |
| \vdots |
| \vdots | 1119－1570 120－300 8．63－8．68

L98－IE8 0 0 t－8って I6Zて－SSLI ZL•8－Sナ・8 SZS－8IZ Z9てZ－LItI 980－1200 200－401 8．45－8．75 1836－2291 231－337 8．2－8．41
 1197－1600 299－494 8．42－8．67
780－1317
919－1350
on 71－1247

$\begin{array}{lll}100-710 & 6-12 & 0.28-0.40\end{array}$

 0
nitrogen，organic carbon，carbonates and bicarbisture content（M．C．\％），total nitrogen，nitrates，ammonia

Table2: periodicity of the isolated algae during the present study

List of algae	Field 				
1 Chroococcus minutus 2 Gloecapsa stegophila 3 Calothix parielina 4 C. thermclis 5 Nostoc calciola 6 N. commune 7 N. entophytum 8 N. minutm 9 N. paludosum 10 N. passerianum 11 N.pruniforme 12 N. puncliforme 13 N.sphaericum 14 N.spongiaeforme 15 N.verrocosum 16 N. sp. 17 Nodularia harvenyana 18 Anabaena ambigue					\qquad

Ghanem, N.A.E.; El-ayouty, E.Y., And El-Gamal, A..D.......
Table2: periodicity fo the isolated lgae during the pesent study (cont.)

. List of algae		Field2 	Field3 	Field4 	
19 A. anomala			-2 2		
20 A.doliolum		-			
21 A. naviculoides					
22 A. subtropica					
23 A. variabilis					
24 A. varibilis var ellipsospora		-			
25 A. variabilis var kashiensis		-			
26 Oscillatoria acuta		-			
27 phormidium corium	-				
28 ph . tenue	-				
29 Lynbya dendrobia					
30 L. gracilis					
31L.martensiana					
32 L.scotti					
33 Microcolaus aculissimus					
1 chlamydomonas altera			$\underline{\square}$		
2 Ch . leptobasis	-				
3 Chlorella pyrenoidosa					
4 Chlorococcum botryoides					

Succession and periodicity of soil algae.
Table (3) Ranges of pH ., Moisture content and nutrients in the soil samples supported the isolated predominating taxa ($\mathrm{Kg} / \mathrm{ha}$) in all the studied fields.

Peredominant algal taxa S	Stand No	. pH	M.C.	Total N_{2}	No_{3}	NH_{4}	Organic Carbon	Co_{3}	Hco_{3}
Notoc sp.	1,3,4,5	8.01	2.43-19.19	109-1000	3-25	0.22-0.72	546-1631	980-3504	24-872
N. entophytum	1,3	8.34	2.83-8.91	476-865	9-51	0.27-0.62	793-1430	1697-2231	129-377
N. paludosum	1,2,3	8.71 8.01	1.58-13.16	100-1100	4-51	0.27-0.72	340-1631	1131-540	116-872
N. punctiforme	4,3	8.72 8.01	1.58-13.16	100-710	6-18	0.28-0.62	430-1417	1131-2321	128-450
N. sphaericum	2,3,4.5	8.62	2.43-13.39	109-584	3-28	0.19-0.62	400-1450	980-2262	200-872
N. verrocosum	2,4	8.20	1.58-13.16	100-686	6-18	0.28-0.62	430-1417	1131-2321	128-450
Anabaena ambigua	1,5	8.29	2.73-19.19	196-1000	3-25	0.22-0.72	591-1631	1120-3504	24-872
A. anomala	2,4,5	8.25	1.83-13.96	100-710	3-28	0.22-0.62	430-1350	980-2262	120-872
A. naviculoides	2,5	8.20	1.58.4.14	379-767	6-18	0.29-0.71	631-1247	1836-2291	231-390
A. variabilis	2,3,5	8.50 8.20	1.58-8.91	379-676	6-18	0.29-0.71	631-1417	1755-2321	231-390
A. variabilis var ellipsosporis	2,3,5	88.62	1.58-8.91	379-767	6-18	0.29-0.71	631-1417	1755-2321	231-390
Chlamydomanas altera	2,3,4	8.62	1.83-13.16	100-710	6-28	0.28-0.62	430-1183	1131-2262	128-525
Chlorococcum	3,4,5	88.22	1.80-8.91	487-686	6-17	0.31-0.71	816-1417	1755-2321	231-410

Ghanem, N.A.E.; El-ayouty, E.Y., And El-Gamal, A..D.......

filed No. 1 (during Mar.-Jun.period) while the minimum value ($3 \mathrm{~kg} / \mathrm{ha}$) reached during Dec.-Feb period in filed No. 5. The maximum value of ammonia nitrogen, organic carbon, and carbonates was recorded in field No. 1 during Jul-Nov. period, while the minimm value of these parameters was attained during Dec.- Feb. period in fields No.1,2\& 4 respectively. Bicarbonates reached their maximal value in field No. 5 during Jul.- Nov. While the minimum one was during Dec.- Feb. period in field No.1.

For further details concerning the range of each studied paramater throughout the present investigation in each field see Tablel.

It was observed that at least one or two species of both Phromidium and Lyngbya were recorded throughout the whole period of investigation in addition to the alga Nodularia harvenyana that predominated throughout the whole period of investigation only in field No. 1 Anyhow, these species were found as follows:

These species are considered to be highly adaptable to the extreme and severe variations in the climatic and edaphic factors of these regions.

Succession and periodicity of soil algae .

Field No. 1	Eiled No. 2	Field No. 3
1-Nodularia han'enyana.	1-Phormidium corium.	1- Phormidium corium
2-Phormidium corium.	2-Ph. tenue	2-ph. tenue.
3- Ph. tenue.	3-Lyngbya dendrobia	3-Lyngbya martensiana.
4-Lyngbya gracilis.		4- L. scotti.
5- L. martensiana.		
Field No. 4	Field N0. 5	
1-phormidium corium.	1-phormidium tenue.	
2-ph. tenue.	2-Lyngbya dendrobia.	
3- Lyngbya scotti.	3- L. scotti.	

Ghanem, N.A.E;; El-ayouty, E.Y., And El-Gamal, A.D.......

Concerning the perioditity of the remaining isolated algae throughout this investigation, one can condlude the following:

Algal taxa	period	Field No.
Chroococcus minutus	Mar.- June., 1988	3
Gloeocapsa stegophila	Mar.- June., 1988	3
	June.-Sep., 1988	4
Nostoc calcicola	Jul. 1988-jan. 1989	$2 \& 5$
N. spaericum	Mar. 1988-May 1989	1
	Jul. 1988-Jan, 1989	$2-5$
N. paludosum	Mar.-Nov., 1988	$1-5$
N. entophytum	Mar.-June., 1988	$1 \& 3$
N. verrocosum	Mar.-Oct., 1988	$2 \& 4$
Anabena ambigua	Jul. 1988-Jan., 1989	$1 \& 5$
A. anomala	Jul. 1988-Jan. 1989	$3,4,5$
A. variabilis		
$\quad \&$	Mar.-July, 1988	$2 \& 5$
A. naviculoides		
A. variabilis var. ellipsospaora	Mar.-May, 1988	$2,3,5$
	Jul.-Sep., 1988	3,4
Chlamydomonas altera	Jul.-Nov., 1988	2
Ch. tepasis	Jul.-Nov., 1988	1
Chlorella pyrenoidosa	Jul.-Feb., 1989	2
Chlorococcum botryoides	Mar.-Aug., 1988	3,4

Succession and periodicity of soil algae .

Regarding the succesion of isolated algae in each field, one can notice the following:
Field
No.
Mar. 1988
Jul. 1988

Notosc entophytum
N. minutum

1 N. paludosum
N. passerianum
N. sphaericum

Nostoc paludosum
N.punctúforme N . veroxosum
2 Anabaena naviculoides
2 A. variabilis
A. variabilis var. ellipsopora
A. variabilis var. kashiensis
O. acuta

Chroococcus minutus
Gloecapsa stegophila
Calothrix parietina
3 Nostoc paludosum
N . commune
N.entophytum
N.punctiforme

N . spongiaeforme
Nodularia harvenyana
Anabaena subtropica
A. variabilis
A.varibilis var. ellipsospora

Chlorococcum botryoides
4 Nostoc paludosum
N. verocosum

Chlorococcum botryoides

Nostoc paludosum
Anabaena naviculoides
5 A. variabilis \quad A.variabilis var. ellipsospora
A.variabilis var. ellipsosp
Chlorococcum botryoides

Nostoc sp.
Anabaena ambigua
Microcoleus acutissimus
Chlamydomonas Leptobasis
Calothrix thermalis
Nostoc calcicola
N.spharericum

Anabaena doliolum
Chlorella pyrenoidosa
Chlamydomonas altera

Nostoc sp.

N. pruniforme
N. sphaericum

Chlamydomonas altera

Gloeocapsa stegophila
Calothrix parietina
Nosstoc sp.
N. sphaericum

Anabaena anomala
Chlamydomonas altera
Nostoc sp.
N. calcicola
N. sphaericum

Anabaena ambigua
A. anomala

Ghanem, N.A.E.; El-ayouty, E.Y., And El-Gamal, A..D.......

DISCUSSION

The algae isolated - throughout the whole investigation period from soil crusts of all fields (Table 2) were almost mainly bluegreen ones, especially the filamentous forms. These were dominated by Nostoc spp. which constituted $46.2,35.7,40.40$ and 33.3% of the whole blue-green algae encountered in the five fields unederstudy (l-5) respectively; followed by Anabaena spp. comprising $7.7,33.3,20,10$ and 41.7% of the blue green algae in the fields (15), respectively. This is cofirmed by the findings of Allison et al. (1937) who found that all culitivated lands and grass lands support a rather abundant flora of blue green algae and also in agreement with those of Ashely et al (1985) and Roger et al. (1987) who found that Nostoc was the most dominant genus, followed by Anabaena in samples from rice fields (from philippines, India, Malysia and portgal). They also found that the incidence of Nostoc was higher in dry soils than in wet soils.

A very important factor for the distribution of soil algae is the pH value of the soil crust, which was alkaline throughout the whole investigatin period. It is generally accepted that neutral or alkaline soils are more favourable to the development of blue-green algae (Durrel. 1964; Shields \& Durrel, 1964; Cameron and Blank, 1966; Holm-Hansen, 1968; Stewart, 1969; Brock, 1973; Friedmann\& Galun, 1974; Shubert, 1980.

Succession and periodicity of soil algac .

The presence of numerous cyanophycean members as compared to other types of soil algae is a matter of tolerance and adaptability (Brock, 1973). However, the widespread of cyanophycean members in the present study than the other groups, may be due mainly to the cellular structure of such organisms. Such assumption is in confirmity with the findings of Fay \& Fogg (1962) and Trainor (1978) who reported that the ability of blue greens to survive under variables is due to the properties of prokaryotic cells.

It was found that the majority of Nostoc spp. were recorded during Mar.-Oct. period while some of them were observed during Jul. 1988-Jan., 1989 period. This is in partial agreement with the finding of Abou El-Kheir\& El-Shimi (1973) who recorded Nostoc spp. in El-Zomor and El-Mansoriya Canals, Giza during Oct- Jan. Period.

It was also observed that Anabaena spp. were recorded during Mar - Jul period (5 spp .) , Jul - Nov. period (2 spp.) and one species during Jul - jan period. This in partial accordance with the findings of some workers as follows : Rzoska et al. (1955) in White and Blue Nile. Sudan, during the perods May - Dec. and Jan - Apr. respectively; Abou El - Kheir \& El - Shimi (1973) in El - Zomor and El - Mansoriya Canal, Giza, A. R. E during Aug - Nov. period, and Shabban et al. (1987) in El - Tawila Drain, Dakhlia, A. R. E. during Jun-Oct period.

Ghanem, N.A.E.; El-ayouty, E.Y., And El-Gamal, A.D.......

Four Lyngbya spp. were recorded throughout the whole investigation period, L. scotti in fields No. $3,4 \& 5$; L. dendrobia in fields No. 2 \&5; L. martinsiana in fields No. 1 \& 3, and L. gracilis in the first field. Rzoska et al. (1955) recorded Lyngbya sp. in he white and Blue Nile, Sudan, during Oct-Jan period while Abou E. Kheir\& El-Shimi (1973) recorded Lyngbya spp. In El-Zomor and ElMansoriya Canals, Giza, Egypt, during Aug-Oct. period.

Oscillatoria acuta was recorded during Mar-Jul period-in the present study-only in the second field. In this respect, Oscillatoria spp. were recorded by Nosseir and Abou El-Kheir (1972) in Elkhashab Canal during Dec-Mar and Jun-Dec. period; Abou El-Kheir \& El-Shimi (1973) in El-Zomor and El-Mansoriya Canal Giza during Aug.-Dec. period, and by Shaaban et al (1987) in El-Tawila Drain, Dakahlia governorate, during Apr., Aug\& Oct.

Chroococcus minutus was recorded only in the second field during Mar-Jun period, while it recorded by Abou El - Kheir \& ElShimi (1973) in El - Zomor and El - Mansoriya Canals in Aug, Sep \& Nov.

Concering the periodicity of green algae in this study, Chlamydomonas altera was recorded in the second field during Jul-Jan. period and Jul-Sep. period in fields No. 3\&4. Chlorella pyrenoidosa also recorded in the second field during Jul-Jan period while Chlorococcum borryoides was recorded in field No. 3,4\& 5 during Jul-Nov.

Succession and periodicity of soil algae .
period. Similarly, Abou El-Kheir\& El-Shimi (1973) recorded Chlamydomonas spp., Chlorella spp., Chlorococcum spp. during AugNov. period in El-Zomor and El-Mansoriya Canals, Giza. Our results - rconcerning Chlorococcum - is not in hamony with that of Nosseir \& Abou El-Kheir (1972) who recorded Chlorococcum spp. during Mar-Jun. period.

According to the ranges of the studied parameters in the samples of soil crust (Table 3), the frequent algae can be segregated into three classes:

1- Moisture content:

a- wide range:
Nostoc sp., N. paludosum, N. punctiforme, N. sphaericum, N. verocosum, Anabaena ambigua, A. anomala and Chlamydomonas
altetra.
b- Medium range:
Nostoc entophytum, Anabaena variabilis, A. variabilis var. ellipsospora and Chlorococcum.
c- Narrow range:
Anabaena naviculoides.

Ghanem, N.A.E.; El-ayouty, E.Y., And El-Gamal, A.D.......

2- Total Nitrogen:

a- Wide range:

Nostoc sp., N. paludosum, Anabaena ambigua.
b- Medium range:

Nostoc punctiforme, N. verrocosum, Anabaena anomala and Chlamydomonas altera.
c - Narrow range:
N. entophytum, N. sphaericum, Anabaena naviculoides, A. variabilis, A. variabilis var. ellipsospora and Chlorococcum.

3- Organic carbon:

a- Wide range:
Nostoc punctiforme, N. sphaericum, N. verocosum, and Anabaena anomala.
c- Narrow range:
N. entophytum, A. naviculoides, A. variabilis, A. variabilis var. ellipsospora, Chlamydomonas altera and Chlorococcum.

4- Carbonates:
a- Wide range:
Nostoc sp., N. paludosum, Anabaena ambigua.

Succession and periodicity of soil algac.

b- Medium range;

N. punctiforme, N. sphaericum, N. verocosum and Anabaena anomala and Chlamydomonas.
c- Narrow rgane:
N. entophytum, A. naviculoides, A. variabilis, A. variabilis var. ellipsospora, and Chlorococcum.

5-Bicarbonates:
a- Wide range:
Nostoc sp., N. paludosum, N. sphaericum, A. anomala and A. ambigua.
b-Medium ragne:
N.entophytum, N. punctiforma, N. verrocosum, and Chlamydomonas.
c- Narrow range:
A. naviculoides, A. variabilis, A. variabilis var. ellipsospora, and Chlorococcum.

The associations obtained from the preivious classification in ase of total nitrogen, organic carbon and carbonates may explain Q: similar behavior in fluctuation and periodicity fo these species (se Table 2) and ascertain that edaphic factors seem to be an im-

Ghanem, N.A.E.: El-ayouty, E.Y., And El-Gamal, A..D.......
portant determing factor in the fluctuation and periodicity of the predominating species forming the basis of this study. This conclusion is confirmed by the finding of Kobbia \& Shabana (1988) who found that organic carbon and carbonate content in the soil samples are the major controlling factors affecting the growth and distribution of algae in Egyptian Bahariya Oasis.

It was found that some algal species were recorded only in one field (NO.1,2 \& 3) while they not exist in the other fields, these species are as follows; Nostoc minutum, N. passerianum, Microcoleus acutissimus, and Chlamydomonas Leptobasis in field No. 1, Calothric thermalis, Anabaena doliolum, A. variabilis var Kashiensi, Oscillatoria acuta and Chlorella pyrenoidosa in field No. 2, and Chroococcus minutus, Nostoc commune, N. pruniforme, N. spongiaeforme and Anabaena subtropic in field No. 3.

The presence of these species in one field in the present study and their absence in the other fields may due to the type of the plant vegtation dominated in each field. This is in accordance with the findings of Evenare et al. (1975) and Salma \& Kobbia (1982) who mentioned that the desert plant vegetation has a direct effect in selecting and determing the types of algal organisms and although there are similarities in the edaphic factors and physco-chemical characters of some sites, yet dissimilarities between the abundance and type of algal population exist. In the authors' opinion that these species may be incapable of living except under specific conditions since they were represented in only one field.

ACKNOWLEDGMENT

The first author is highly thankful to professor W.S. Abou ElKheir (Girl's College, Ain Shams Univ.) for facilities offered and encouragement which enable him to discuss this work. Thanks are also due to professor W.E. El-Saadawi (Faculty of Science, Ain Shams Univ.) for his kind help and encouragement.

REFERERENCES

Abou El-Kheir, W.S.\& A.A. El-Shimi (1973): The effect of som: dissolved nurtrients on the distribution and periodicity of chlorophyceae and cyanophyceae in El-Zomor and ElMansoriya Canals, Giza, Egyp. University College for Giris annual Rev. No. 9: 57-67.

Allison, F.E; Hoover, S.R and Morris, H.J. (1937): physiological studies with the nitrogen fixing alga Nostoc muscorum Bot. Gaz, 98: 433-463.

Ashely, J.; Rushforth, S.R. and Johansen. J.R. (1985): Soil algae of cryptogamic crusts from the Unitah Basin, Utah, U.S.A. Great Naturalist. 45: 432-442.

Balck, C.A.; Evans, D.D.; Ensminger, L.E., white, J.L., and Clark, F.E. (1965): Methods of soil analysis II. Chemical and Microbial properties Am. Soc. Agr. Inc. Madison, wisconisn, U.S.A

Ghanem, N.A.E.; El-ayouty. E.Y.. And El-Gamal. A..D.......

Brock, T.D. (1973): Evolutionay and ecological aspects of the Cyanopytes. Pages 487-500 in N.G. Carr and B.A. whitton, editors "TheBiology of Blue-green Algae" University of California press, Berkely California, U.S.A.

Cameron, R.E. and G.B. Blank (1966): Desert algae: Soil crust and diphanous substratus algal habitats. Ibid, 32, 971.

Chantanachat, S. and Bold, H.C. (1962): phycological studies, II. Some algae from arid soils Univ. Texas publ. No. 6212,15.

Durrel, L.W. (1964): Algae in tropical soils. Transactions of the Amerincan Microscopical Society, 80:73.

El-Ayouty, E.Y. and Ayyad, M.A (1972): Studies of blue- green algae of the Nile Delta 1. Description of some species in a wheat field, Egypt. J.Bot., 15, 283.

Evenari, M.;Schulze, E.D.: Kappen, L.; Buschbom, V. and Lange,O.L. (1975): Adaptive mechanisms in desert plants. in "physiological Adaptation to the Environment", P. 111.

El-Hag, A.G.D. and G.E. Fogg (1986): The distribution of cocoid blue green algae (cyanobacteria) in the Menai striats and Irish Sea, Br. Phycol. J. 21:45-54.

Fay, p. G.E. and Fogg, (1962): Studies on nitrogen fixation by bluegreen algae III-Growth and nitrogen fixation in Chlorogoea fristschii Mitra, Arch. Mikrobiol., 42, 310-21.

Friedman, E.I. (1964): Xerophytic algae in the Negev desert, In: Tenth Intern. Bot Conger. Edinburgh. Abstracts p. 290-291. \& Galun, M. (1974): Desert algae, Lichens and Fung In G.W. Brown Jr. (ed). Desert biologiy Ii Academic press. New York.

Lipkin, Y. and Ocampopaus, R. (1967): Desert algae of the Negev. (Israel) phycologica 6, 185.

Fritsch, F.E. (1906) problems in aquatic biology with special frerence to the study of alagl periodicity New Phytol. 5: 150169.

Hart, T.J. (1935): On the diatos of the skin films of whales and their possible bearing on problems of whale movement. discovery Rep. 10: 247-282.

Holm-Hansen, O. (1968): Ecology, physiology and biochemistry of bleu-green algae Ann. Rev. Microbiol. 22: 47-70.

Jackson, M.L. (1977): Soil chemical analysis prentice Hall of Indian private Limited- New Delhi.

Jorgensen, E.G. (1957): Diatom periodicity and silicon assimilation Dansek. Bot. Ark. 18: 1-54.

Ketchum, B.H. (1951): plankton algae and their biological signficance In Manual of Phycology, (G.M. Smith, Ed) Waltham, Mass Chronica Botanica Co., pp. 335-346.

Kobbia, I.A. (1983): Ecophysiological studies on the rhizosphere algae of some Egyptian; plants. Egypy Soc. Of App. Microbiol. proc. V, Conf, Microbial, Cario, 2 soils and water Microbiol parper No. 49, 143-166.
\qquad (1985): Nitrogen-fixing blue-green algae of the semiarid regiong along the gravel and limestone deserts of Cario Suez Road, Egypt, Sohag pure and Appl. Sci., Bull Fac. Sci., Egypt, 2, 15.
\qquad \& El-Batanouny, K.H.(1975): Studies on the algal flora of Egyptian soils. 1-Different sites along a lake in the salines of Wade El- Natroun prbl. Cario Univ., Herb., 6, 61.
\qquad \& Shabana, E.F. (1988): Studies on the soil algal folra of Egyptian Bahriya Oasis, J.Bot. 31: 23-43.

Komaromy, Z.S.P. (1976): Soil algal growth types as edaphic adaptation in Hungarian forest and grass steppe ecosystems Acta. Bot. Acad. Sci: Hung., 22, 373.

Lund, J.W., and Talling, J.F. (1957): Botanical and Limnological methods with special reference to the algae Bot. Rev. 23; 489-583.

Nosseir, M.A. and Abou El-Kheir, W.S. (1970 a): Effect of dissolved nutrients on the distribution of algal flora in selected lakes of U.A.R. I-Lake Qarun. Ann. Rev. Univ.Coll. for Girl's, Ain Shams Univ., U.A.r. No 6, 15-24.

Succession and periodicity of soil algae .
\qquad (1970 b): Effect of dissolved nutrients on the distribution of algal flora in selected lakes of U.A.R. II-Lake Nasser Ann. Rev. Univ. Coll. for girl's, Ain Shams Univ. U.A.R. No. 6, 33-47.
\qquad (1970 c): Distribtion and periodicity of algal folra in ElKhashab Canal during winter and spring months. Ann. Rev. Univ. Coll. for Girl's, Ain Shams U.A.R. No. 6, 49-68.
\qquad (1972); Flucturations and periodicity of the algal flora found in El-Khashab Canal throughout the year of 1968/ 1969. Ann. Rev. Univ. Coll. for Girl's, Ain Shams Univ. U.A.R. No. 7, 59-66.

Patrick, R. (1945): A taxonomic and ecological study of some diatoms from the pocono plateau and adjacent rehions. Farlowia 2: 143-214.

Piper, C.S. (1950): Soil and palnt Analysis "Interscience Ins. New York.

Rao, C.B. (1955): On the distribution of algae in a group of 6 smal ponds part II J. Eco. 43: 291-308.

Roger, P.A.; Santiago - Adrales, S.; Reddy, P.M. and Watanabe, I (1987): The abunance of heterocystous blue-green algae in rice soils and inocula used for application in rice fields. biol. Fertil. Soils 5: 98-105.

Rzoska, J. Brook, A.J.\& G.A. prowse (1955): Seasonal plankton

Ghanem, N.A.E.: El-ayouty, E.Y.. And El-Gamal, A.D...

development in the white and Blue Nile near Khartoum, Sudan. proc. of the internat. Assoc. of theoritcal and App. Limnology Vol. XII, pa, e 327-334.

Salama, A.M. and Kobbia, I.A. (1982): Studies on the algal flora of Egyptian soils : II-Different site of a sector in the Lybian Desert, Egypt, J. Bot., 25, 139.

Shaaban, A.S.; M.E. Younis; A.M. El-Habibi\& M.E. Elnaggar (1987): the algal flora of Dakahlia Area III- The phycoflora of El-Tawila Drain, Bulletin of Fac. of Sci., Mansoura Univ. Vol. 14 (1): 135-151.

Shields, L.M. and Durrel, L.W. (1964): Algae in relation to soil fertility. Botanical Rivjew, 30,92 .

Shubert, L.E. (1980): Soil algal relationships from surface mined soils Br. phycol. J. 15: 417-428.

Stewart, W.D.P. (1969): Bilolgical and ecological aspects of nitrogen fixation by free-living microoorganisms proc. R. Soc. London B. 172: 367-388.

Trainor, F.R. (1978): "Introductory phycology" 255 PP.J. Wiley and Sons.

هـلاهظات على التعاقب والهوسهية لطحالب

 التربة فهى الأراضس الهنـزرعة$$
\begin{aligned}
& \text { نادى أحمد البسيونـى غانمّ*، عيشه يـاسيـن العيوطى ** } \\
& \text { احهد בرويش الجهـل }
\end{aligned}
$$

قسم النبات - كلية العلوم - جامعة الاززهر* - جامعة القاهرة ** - مصر
.تهف الدراسة الى التاء الضوه على تعاقب وهسمية مجموعة طـحالب التربة التى عزلت من الطبتة السطحمية للتربة التى تنم بيا بعض الاشجار رالمــاميل بينطتة الخانكة بمحافظة التليبيبة.

