Menofia University

Faculty of Engineering Shebin El-Kom

Dep. of Basic Engineering Sciences

First Semester Examination 2015-2016

Subject: Math. (1-A)

Time Allowed: 3 hours Total Marks: 100 marks

Date of Exam: 12/1/2015

First: Algebra (Answer all the Following Questions)

(Question Number-1):(25 Marks)

A- Find all the roots of the polynomial:

$$f(x) = x^5 - x^4 - 3x^3 + 3x^2 - 4x + 4 = 0$$

Resolve into partial fractions:

i)
$$\frac{x^2+15}{x^4+6x^3+12x^2+18x+27}$$

ii)
$$\frac{5x-1}{(2-x)(1+x)}$$
, Then find the coefficient of x^n and the condition of expansion.

(Question Number-2):(25 Marks)

A- Use the mathematical induction to prove:

i)
$$3^{2n+1} + 2^{n-1}$$
 is a multiple of 7.

ii)
$$1^2 - 2^2 + 3^2 - 4^2 + \dots - n^2 = \left(-\frac{1}{2}\right)(n)(n-1)$$
 for any even number.

B- Define mathematically the following:

Skew Hermitian matrix, extreme point, convex set, Cayley-Hamilton theorem, rank of matrix.

Skew Hermitian matrix, extreme point, convex set, Cayley-Hammon theorem, rank C. If
$$\mathbf{B}^T = \begin{bmatrix} \mathbf{7} & \mathbf{5} & \mathbf{13} \end{bmatrix}$$
 and $\mathbf{A} = \begin{bmatrix} \mathbf{9} & \mathbf{2} & \mathbf{1} \\ \mathbf{1} & \mathbf{3} & -\mathbf{1} \\ \mathbf{7} & \mathbf{1} & \mathbf{1} \end{bmatrix}$; where its columns are a_1, a_2 and a_3 :

i) Explain why the system $\mathbf{A}\mathbf{x} = \mathbf{B}$ is inconsistent; where $\mathbf{x}^T = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$.

ii) Show whether the vectors a_1 , a_2 and a_3 are dependent or independent.

Second: Differential calculus(Answer all the Following Questions:)

(Question Number-3) :(50 Marks)

A- Find $\frac{dy}{dx}$ of the following functions:

(16 Marks)

Code: BES 011

1)
$$y = \frac{(\log_x \sin x) \sqrt{x^2 + \cos x}}{(3x - 2)^3 \tan^{-1}(x^2 + 1)}$$
2)
$$y = \tan\left(\frac{(\sec x - e^{2x}) + \sqrt{3 \ln x + 5}}{x^3 + \sin^{-1} x}\right)$$
3)
$$(\cos x)^y = (\cos y)^x$$
4)
$$y = (\cosh 2x)^{\sin x}$$
B- If $u = xe^y + ye^x$, $x = r + 2t$ and $y = 3r - t$, find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial t}$. (5 Marks)

B- If
$$\mathbf{u} = \mathbf{x}\mathbf{e}^{\mathbf{y}} + \mathbf{y}\mathbf{e}^{\mathbf{x}}$$
, $\mathbf{x} = \mathbf{r} + 2\mathbf{t}$ and $\mathbf{y} = 3\mathbf{r} - \mathbf{t}$, find $\frac{\partial \mathbf{u}}{\partial \mathbf{r}}$ and $\frac{\partial \mathbf{u}}{\partial \mathbf{t}}$. (5 Marks)

C- Evaluate the following limits:

(9 Marks)

1)
$$\lim_{x\to 0} \left[\frac{1}{\sin x} - \frac{1}{x} \right]$$
 2) $\lim_{x\to 0^+} (\cos x)^{\frac{1}{x}}$ 3) $\lim_{x\to \frac{\pi}{3}} \frac{\cos x - \frac{1}{2}}{x - \frac{\pi}{3}}$

D- Prove that the function $f(x,y) = xy^2 + e^{x^2y}$ is continuous.

(4 Marks)

E- Prove that
$$D_n(\cos(ax+b)) = a^n \cos(ax+b+\frac{n\pi}{2})$$
, then if $y = (x+\sqrt{x^2-1})^m$

prove that
$$(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$$
. (8 Marks)

F- Prove that
$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$$
, where $2 \prec e \prec 3$. (3 Marks)

G- Prove that
$$\operatorname{csch}^{-1} x = \ln \left(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{|x|} \right), \quad x \neq 0.$$
 (5 Marks)

