Menoufia Univeresity Faculty of Engineering Shebin El- Kom.
Dept. of Production Eng. \& Mechanical Design. menofauniversity

Design tables \& charts ar* allowed

Answer_all_the followeng_questions_:
Question (1)

A spindle of a cylinderical grinding machine has the following data :

- Front bearing stiffness
- Rear bearing stiffness
- Over hanged length
- Mean spindle diameter

$$
\begin{aligned}
& =300 \mathrm{~N} / \mu \mathrm{m} . \\
& =150 \mathrm{~N} / \mu \mathrm{m} . \\
& =49 \mathrm{~mm} . \\
& =70 \mathrm{~mm} .
\end{aligned}
$$

Evaluate $L_{\text {opt. and }} C_{n}$.
(25 Marks)

Question (2)

A lathe has two flat cast-iron slideway of equal width and height of half the width. While turning a 150 mm . diameter workpiece, the tangential, radial \& axial components of the cutting forces were found to be 830 ; 250 ; $166 \mathrm{~K}_{\mathrm{p}}$ respectively. The lathe carriage weighs 180 K and is 200 mm . long. Design the slideway assuming any required data. Cast-iron slideways can withstand a max. presauze of $10 \mathrm{~K} / \mathrm{cm}^{2}$. Consider that $K_{S}(\mathrm{Min})=.50 \mathrm{~K}_{\mathrm{p}} / \mu \mathrm{m} ; W=22 \mathrm{~cm} \mathrm{\&} \mathrm{h}=18 \mathrm{~cm}$. (25 Marks)

Q3 (25 Marks):

An electric motor 5 Kw 1500/750 r.p.m. attached to a gearbox to drive a turning machine, the gear box has the following specifications:

No. of the carried out speeds $=2 \times 6=12$ speed
Max. speed carried out from the gearbox $=1200$ r.p.m.

- $\mathrm{f}=1.26$

Find:

- The kinematic diagram for the best arrangement.
- Choose the best probability and construct the speed chart.
- Calculate the actual speeds.
- Design the gears of the first stage.

\mathbf{Q}_{4} (25 Marks):

In a turning operation the cutting conditions were:
Max. $\mathrm{K}_{\mathrm{s}}=15 \mathrm{X} 10^{4} \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{S}=0.06 \mathrm{in} / \mathrm{rev}$.
$\mathrm{V}=800 \mathrm{ft} / \mathrm{min}$.
$\mathrm{a}=0.025$ in
$\mathrm{d}=4$ in

Req.

$\mathrm{V}, \mathrm{T}, \mathrm{P}_{1}$, and N
If:
$\mathrm{P}_{2}=0.2 \mathrm{P}_{1} \quad$ and $\quad \mathrm{P}_{3}=0.4 \mathrm{P}_{1}$
Assuming a suitable data for turning machine dimensions>
Find the forces and moments distribution on the bed of the machine.

