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ABSTRACT 

Lbe $'ow of a viscoelastic fluid of grade two which performs a 

con~bi~ted PoiseriilIe -Cozretteflaw in the ani~zrlar region betwee?? two 

eccem-ic tzrbes is investigated . A concised review of the first -order 

sol~itioll (3,/7) is given in order to form a suitable basis for the present 

calculalion. 

?he results of the present work stiggests a major modrJicatiott of 

the eccentric-cyliilder rheometer (I)  which is based on the pure 

Cozrerre flow. Front the prnctical point of view , a rileometer based 

oir tile conzbined Poisedle-Cozlette flow can be realized and is 

expected to give more i~lformatioit thcw the yreserlt one. 

Key words : Yiscoelastic flr~id, Ecceiltric tzrbes ,Poisedle - 
CotrrrreJlow , Secorldayflorv. 

1. INTRODUCTION 

In an extensive theoretical study of the steady state motion of a 

fluid of grade two in the annular region between two eccentric tubes, 

the velocity field due to superposition of rectilinear shearing, Poiseuiile 

and Couette flow is investigated (3,7).The calculations are carried out 



within the limit of the retarded motion expansion (4). Up to the first- 

order (viscous or Navier-Stokes fluid), the three motions create three 
independent contributions; namelyW,, (<, 7) for simple shearing, 

w 1 5 . 9  1 for Poiseuille flow and u., (4,~) for Couette flow. 

Provided each of the afore-mentioned three motions is considered 

separately, the velocity field for a fluid of grade two coincides with that 

of the Navier-Stokes fluid. However, if any of the two axial motions is 

superimposed on the Couette flow, a second-order contribtion 
W,(<, v) takes place. This second-order term results as an interaction 

between axial and rotational flow. The second-order term W, (c 7) is 
already calculated (3,7) for the combination of simple shearing and 

Couette flow; i.e. for the so called helical flow. 

In the work (3,7) , the authers suggested the application of this 

boundary value problem for the construction of a rheometer which 

allows the determination of some of the second-order (elastic) 

constants besides the first-order (Newtonian) viscosity. 

This suggestion is realized partially in a very important and 

fkndamental contribution to Rheometry (1,2). In this work a 

rheometer, termed a new eccentric cylinder rheometer, is constructed 

on the basis of the pure Couette flow. The authers corrected the stream 

hnction for the first order Couette flow given in (3,7). They showed 
that the rheometer is capable of determining the shear viscosity p and 
the second- order elastic constant a ,  in a convenient way and only by 

one and the same set up. Due to the impossibility ofrealizing the 

combination of simple shearing and Couette flow, a further 

development of the eccentric cylinder rheometer is not possible. 

However, the combined Poiseuille-Couette flow is much easier to be 

realized. Hence, the aim of the present work is to determine the 
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second order velocity field w,QG~,rl) hen Poiseuiiie flow is 

superimposed on Couette flow. 

I 

2. Formulation Of The Problem 

The fluid of grade two is assumed to perform isochoric and 

steady motion in the annular region between two eccentric cylinders of 
3 

radii R , , R, (R, < R, ) and of infinite lengths . The two axis of 

the cylinders stand parallel to each other and to the X3 - axis. The 

geometry of the problem suggests the use of cylindrical bipolar 

coordinates (& 7 , ~ ) .  This system of coordinates is generated from the 

rectangular system of coordinates (X , , X, , X ,I. by the conformal 

transformation ( 5). 

where 

W = <+ iq mdZ = x, + ix,. Eq (1) is equivalent to the real 

transformation 

X3 = z  ; z=x ,  7 

* 
( 2 )  

where h = c l(ch <+ cos ~,rl) is the scale factor for the bipolar 

coordinates. The cross-section of the flow region is shown in Fig (1) 
where < and [, - .. represent the cross-sections of the inner and outer 

cylinders; respectively . 
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The first-order velocity field calculated in ( 3,7 )is given by the 

expression , 

v = ip, + ~ , , l + u _ , ~ T ,  v h  - (3 1 
where the three contributions ~,; ,W,,and 2, are explained as follows 

(I) The simple shearing created by the axial sliding of the inner 

tube with constant velocity WQ iinduces a velocity field given by < 

(u) The Poiseuille flow due to the constant pressure gradient "a" 
in the axial direction creates the velocity field 

n * 2(-1) cos n q  ! --dl 
+ C c o t h i e  -1 shn(<-6,) - 
n=I shn (i\ -T2 1 

(iii) The Couette flow due to the rotation of the inner tube about its 7 

own axis with constant angular \~elocityir R is given by 

u, = -Z A Y y, = h- ' [<~, ,~ - by,,;], 
,. 

- (W 



Where 

Yl Qh( Y~')$~-A\-\, <, - ~-pb.6 shi.. <, - 9 
ch 5; 

- & < - < 2 N \ &  -OI+z (C-C2>  ght.C-&) 

cos 7 + 
Sch S -sh 6 K < - < 2 )  - cw<, -nsh( i - f&) l ' j  

+O(a2) . (6b) 

where 

The rate of flow, c Q , about the inner tube calculated per unit length 

is related to the angular velocity !2 by the relation 

The equation determining the second - order solution is the 

Poisson equation given by 

where - u, is the rotational flow defined by Eqs . ( 6a - 6c ) and 

'CV1 is ,in the present case , the Poiseuille flow defined by Eq (5) . 

The constants p, a1 and a2 are the viscosit>, and the second - 
order material coefxients according to the constitutive equation 



where 

A = V g ,  + ( V u ,  y. - -\ 

and 

In Eq .(8a) - 2 is the stress tensor ,P is the hydrostatic p- essure 
2 

and - 1 is the unit tensor . It is obvious that izmdL, are second -order 

terms in the velocity field. 

Eq (7) implies that W2 is , as mentioned before different from 

zero only; if both W1 and _u, are different from zero. 

3. Solution of the problem 

The solution given in (3,7 ) for the case of helical flow was 

performed in terms of the proper Green function, the simplicity of the 

density function left the integration over the Green fbnction within 

tractable limits. However, the density hnction 
V. {V w, . [v~ ,  + ( v ~ ,  )'I} with W1 given by Eq ( 5 )  is so 

I 
complicated that the integration process is associated with serious 

difficulties. Fortunately, a close investigation of the density function a 

shows that a solution for Eq . (7)  can be obtained directly . 
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Consider, 

Since V .  1, = O by the equation of continuity and 

2,. V ( V ~ W ,  ) = _u, . V(-") P = Q. Substituting from Eq (9) into 

Eq. (7) we obtain the following equation 

which has the solution . -4% 

W = -  ff, + a2 
2 - u, . v w ,  + w, (~ ' ,  

P 

where  is the solution of the Laplace equation V' w2 = 0. 

Since - u,. V W, satisfies the boundary conditions, then x t h ' i s  

equal to zero. Hence, 

u,; andu,, are to be calculated from yl,Eq (6b), and 

W,.; d W i , , a r e  to be calculated from Wlp ; Eq. ( 5 ) .  



-a czh-I Zn(-1)" sin 7 
W ' ~ q =  

2p (chi+ cos q')i n=, shns 

Substituting Eqs (13a) - (l2d) into Eq (1 1) we get the proper 
expression for W, ( L: 77') 

This expression is quite complicated. The construction of 
rheometers is frequently done for narrow anndar width. Thus the 
previous expressions will be approximated for the case 

6= 4.1 - <I << h .%loreover, the change of variables 



shows to be usefhl , because it reduces the range 

c2 I < < < ,  to 0 I  y I  I. 

Substituting the last transformation into Eq (12a) we get 

Expanding the hyperbolic fhnctions in terms of power series, and 
neglecting terms of O ( S ) relative to one , then 

and Eq. ( 12b) reduces to 



In the same manner where coth 6 is expanded according to the 

relation, 

6 Y 

which on substitution into Eq. (5) leads to 

Therefore 

- nS e-" 'chSy] cos n7. 

and 

Substituting by ~ ~ s . ( l - l a ) , ( i 4 b ) , ( l ~ b )  and ( l i c )  into Eq. ( I  I), 

the approximated form of W7 - is given by 



DISCUSSION 

Figure (2) shows the dependence of the normalized second - 
order velocity field: 

as function of the coordinate y , whereas the coordinate 7 surves as a 

parameter , The constants in Eq (16) are set 
<, = I. I , <, = 1 ; i.e. S= 0.1 . Figure (3) reveals that W i  possesses 

complicated behavior which will be discussed in the follow in^ points : 
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( i ) Eq. ( 16 ) shows that 

W;(y,O) =Ull';(y,n) = D  suchthatW; = O  

on the line of centers of the two cylinders. 

(ii) The analysis of the curves start at y =O ; i . e., at the wall of 

the rotating inner cylinder. The curve representing W; ( y, nl4) 

describes the second - order velocity on a line which crosses the 
Q 

annular width in the narrow region. On this curve W; increases in 

magnitude with negative values up to a minimum at y %. 15 then goes 
t o  zero at y 0.43 . Thus , in the interval O<y< 0.43 , W; ( y, ~ 1 4 )  I 

opposes the primary flow and slows down the velocity of the fluid. On 
the other hand, in the region 0 . 4 3 5 ~ 5  1, W;(y,nJ4) is positive with 

a maximum at y= 0.65. In this interval the resultant axial velocity is 1 

greater than the primary flow alone . 

(iii) The curve W; ( y, lt: 1) which still lies in the narrower 

region of the annular width shows the same behavior at the previous 
curve. However, I W ; ( y , n l l )  / < I W ; ( y , ~ 1 4 )  I on the whole 

interval OSy5 1 except in the small intertval0.375 < y x0.45 as W;+O 

and in theinterval O.S<y<l. 

(iv ) The curve %I; (y,3 ;r: 4), which lies in the wider region of 

the annular width, shows different behavior. Within the interval 
O l y l 0 . 2 4  W; (y ,3  nI4) is positive with maximum at y 0 1 , such 

that the resultant axial veIocity is greater than the primary velocityW; . 
, 

In the middle region 0.24<y1O.S5, W; (y  ,3 nl4)is negative with 4 

minimum at y a . 5 3  . The motion of the fluid in this region is slower 

than the primary motion. Finally . in the interval 0 .85lyl1 ,  
W: ( y .3 X I  4)is positive with maximum at yW.92. This behavior 

shows that the velocity distribution tends to be flatter than the 



distribution of the primary axial velocity. 

(v) Close investisation of the construction of the eccentric 

cylinder rheometer (1,6) shows that its modification to include the 

Poiseuille axial flow is quite possible . However, to get the practical 

formulas to be applied in this case a carehl calculation of the surface 

tractions, forces and torques at the wall of the outer cylinder is 
necessary .These calculations will be the subject of a hrther work. 
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Fig. ( I )  . The cross-section of the annular r e ~ i o n  between 
two eccentric pipes i~ the X, xZ-plane, including 

a ma p  of the bipolar coordinates in the plaile. 
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