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ABSTRACT:

This paper presents modeling, numerical simulation and experimental behavior
for dynamic and steady state performance of a separately excited DC motor.
The motor is fed from AC to DC symmetrical angle controiled converter. An
intelligent variable gain rule-based speed controller for speed reference tracking
is proposed. The error-driven error-scaled adaptable gain speed controller
allows flexible and robust control of this system. The control scheme has been
implemented using Digital Signal Processor.

LIST OF MAIN SYMBOLS:
A : Maximum voltage signal.
B : Viscous friction coefficient.
Cr : Filter capacitance.
E : Supply frequency
im : Instantaneous armature current.
Is : Instantaneous supply current.
J : Moment of inertia.
Ko : Fixed gain.
L, I'm : Armature inductance and resistance.
Kn : Back e.m.f. Constant.
L& Ry : Filter inductance and resistance.
Ty, : Load torque.
Ts : The sampling period.
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Vs : Instantaneous supply voltage.
\Y% : Peak value of supply voltage.
Ve : Control voltage.

Vi : Motor voltage.

® : Supply angular velocity.

O : Motor angular velocity.

Dref : Reference angular velocity.
Dpase : Base angular velocity.

YisY2,¥3 : Fixed gains optimized off-line.
INTRODUCTION:

Direct current motor drives are used extensively in industries such as steel mill;
paper mill, conveyors, chemical, etc.... In many drive applications, the
mechanical load varies considerably during operation. Robots and machine
tools are two examples, When a fixed controller setting is used for a DC drive
system with wide load changes, unsatisfactory performance is often produced

[1-2].

High performance DC motor drives are important for multitude of industriai
applications [3-5]. Precise, fast, effective speed reference tracking with
minimum overshoot/undershoot and small steady-state error are essential
control objectives. Conventional controllers are usually used for fixed structure,
and fixed parameter design [6-8]. Tuning and optimization of these controllers
are challenging and difficult task, particularly under varying load conditions,
and abnormal operation.

An artificial intelligent system based on fuzzy logic and neural network
techniques was reported for a high performance DC drive [9]. A simulation
study for an intelligent rule-based error driven gain scheduling controller for a
chopper fed DC series motor was proposed in reference [10). Alternatively, an
intelligent self-adaptive rule based speed regulator for a permanent magnet DC
motor drive is implemented in reference [11]. The dynamic and steady state
performance of a symmetrical angle controlled DC motor is investigated, and
the power factor of the system is improved using this technique. Also, the
conventional analog proportional-integral controller is used for speed
control[12].

In this paper, a new concept of intelligent error driven controlier is proposed,
where the control action is scaled on line and adjusted based on the excursion
error magnitude and location in the error phase portrait. The results confirm the
robustness of this controller to limit inrush current and also provide fast
dynamic speed reference tracking for 2 DC motor drive.
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SYSTEM DESCRIPTION:

Figure (1) shows a schematic diagram for the proposed speed control system. It
consists of a cascade combination of a diode bridge rectifier and a symmetrical
angle control converter, connected to a single-phase AC supply. The motor
voltage is regulated by the control voltage (V) from zero to the maximum value
(A) of the timing voltage (@,) as shown in Fig. (2). The inductance L and
capacitance Cr are used as an output DC filter. One MOSFT (Type IRFP450) is
used, and controlled by an impulse generator. The gate pulses are generated as
shown in Fig. (2), where the control voltage is the output from the Rule Based
Error Driven Controller. The parameter values of this system are given in
Appendix (1).
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Fig. (1) System configuration

A fully digital control scheme has been implemented with a Digital Signal
Pracessor (DSP-DS1102), and interfaced with a personal computer. The DSP
(TMS320C31) controller board uses 40/32 bit floating point/integer multiplier,
arithmetic logic unit, 60 MHz clock rate 33.3 n.sec. cycle time, 8 Mbaud serial
interface and 4 external interrupts [13]. The circuits, such as logic, isolation,
driving and measuring are implemented. The speed feedback signal (wm) is
converted into a digital value by an incremental encoder interface. The control
algorithm is implemented as software using high level C programming
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language. The output from DSP is used to drive the MOSFT switch through a
driving circuit as shown in Fig. (1).

Control voltage (¥ :) and Timing voltage (w,) {voit)
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Fig. (2) Experimental result for the output of the pulse generator circuit
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SYSTEM MODELING:

The system under investigation has two modes of operation. These modes are

represented by the equivalent circuits of Fig. (3). The mathematical model can
be obtained as follows:

o Modeling Of The Power Circuit And Motor:
Mode (1):

In this mode, the MOSFET is ON. The differential equations-describing this
mode are given as follows:

d1
Le| 5o |= Vs —igRe = Vo M)

di )
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de L ' _
dvy, V.. .
cf(ud_;n]zlf_lm @)
ig =ip &)
Vg = Vlsin (@ 1) (6)
Mode (2):

In this mode, the MOSFT is OFF as shown in Figure (3). The differential
equations describing this mode are given:

di _
L (di—m]—v St — K@ (8)
m dt m m*m m m
H%m|_x i -Bog-T (9)
dt m L
dvip ) . .
Cf(?]— f““lm ' (10)
ig =0 . (1)

i Ry Ly Ir im
O+W—’W5 7 >
.
Vi
V, G Motor
- and Load
o
Mode (1) MOSFET is ON
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Vi
V=V, G | Motor
— and Load
0_
Mode (2) MOSFET is OFF

Fig. (3) Modes of operation for the system

MODELING OF THE IMPULSE GENERATOR:

From Fig. (2) the equation that represents the timing voltage (@,) is given by:

wg = Asin (at) (12)
The MOSFET is turned ON when:
V, <, (13)
The MOSFET is turned OFF when:

(14)

V> 0,

EFFECT OF CONTROL VOLTAGE FOR OPEN-LOOP SYSTEM:

Figure (4) shows the effect of varying the control voltage on the motor speed
and supply input power factor for 0.5 and 0.75 full load torque [12]. It is
observed that the motor speed is decreased with increasing of the control
voltage (V). Also, it is noted that the input power factor varies in an acceptable
range for such systems compared with thyristor fully controlled rectifier

systems [14].

MODELING OF THE RULE-BASED INTELLIGENT SPEED

CONTROLLER:

Figure (1) shows the basic control structure. The following equations describe
the error (e,) based control concept and the self-adaptability of the error driven,

error scaled control scheme:

The speed error and its derivative is given by:
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- &
ep(k) = Cret = | (15)

@
base

ew(k)—-ew(k-l) (16

e:o(k) =
8

Where, e,(k) and e,*(k) defines the dynamic error phase portrait coordinates for
the rule based intelligent speed excursion based variable gain controller [10-11].

The global error (er) at any sampling time period (k) is given by:
p =]yt 136l 1) a7

The error scaling gain [Re(k)] is given by:

R (k):Hez +y2e'2 -R }/ﬁﬁ (18)
e @ ‘1 o eo

Where, R, is the dead zone to limit control instability and is equal to 0.03
The control modulation step is defined by:

AV =Ko ep (M Re(k) (19)
The final control action is an equivalent proportional plus ntegral action

Vo (k) = AV, (k- 1)+ AV, (k) (20)

Where V (k) is the control voltage limited by the converter operation between

(zero to A) volts.

SIMULATION AND EXPERIMENTAL RESULTS:

The proposed system is designed and implemented to verify the developed
model. The behavior of this system under steady state and transient conditions
is determined by solving the nonlinear differential equations using the fourth
order Runge-kutta method. The instantaneous values of the supply and the load
are obtained from the proposed numerical simulation, as well as from

experimental measurements.
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o Steady-State Characteristic:

Figure (5) shows samples of the steady state waveforms at ©,=200 rad/sec; for
half load torque. It is observed that the motor current and voltage are considered
as ripple free. Also, the motor speed is smooth. Moreover, the supply input
power factor is improved. It is observed that the agreement between the
measured and computed values is reasonable.
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Fig. (5) The steady state waveforms at half load

o Starting Behavior:

Figure (6) shows the waveforms of the motor voltage, current and speed during
starting-up with half load and o= 200 rad/sec. It is noticed that the transient
period is about 0.4 sec, which is considered a relatively long time for the motor
under test. This is due to the motor electromechanical time constant which is
targe compared with the electrical time constant.
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Fig. (6) Run-up behavior for half load and = 200 rad/sec

Figure (7) shows the ( €,- €°») phase portrait.
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¢ Load Torque Disturbance:

Figure (8) shows the response of motor speed for an increase of the load torque
from 0.5 to 0.75 of the rated value. It is observed that the motor speed has

returned to its initial value after 400 msec.
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Fig. (8) Response to a change in load torque from 0.5 to 0.75 of rated value
with @~200 rad/sec.
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Reference Voltage Step Change:

Figure (9) shows the motor voltage, current, and speed with a step change in

speed reference (0f) from 200 to 250 followed by a decrease from 250 to 200
rad/sec at half load. It is observed that the motor can follow the desired speed
reference smoothly.
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CONCLUSION:

The paper presents modeling, simulation, and experimental behavior for
dynamic and steady state performance of a separately-exited DC motor fed from
a single-phase AC to DC symmetrical angle controlled converter. This system is
used to improvement the supply input power factor. The paper presents a rule-
based intelligent error driven-error scaled speed controller to ensure speed
reference trajectory tracking, The proposed system is fully controlled using the
DSP board. The controller is of a robust design ensuring high dynamic
adaptation and self-adjusting error driven control action under both parameter .
and load excursions. The experimental results ensured the controller robustness,
simple and powerful control application capabilities.

APPENDICES:

o APPENDIX (1):
The parameters of the designed system are as follows:
Vs (max) =71 volt ry=2 ohm
C=1200 pf L=0.222 Henry
A=5volt F=50 Hz.

o APPENDIX (2):

The test motor is a separately excited DC motor, 55 volt, 50 watt, 1 Ampere,
3000 r.p.m. having the following measured parameters:

Im =10.5 ohm Ry=550 ohm

B=0.0001 N.m./(rad/sec) Ly=0.06 Henery

km=0.127 volt/(rad/sec) J=0.00015 kg.m?
o APPENDIX (3):

The controller parameters are as follows:

7[50.015 }’2:35

13=0.015 Bp =98

k.= 0.0035 :
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