العرب الكلع



University :

Menoufia

Faculty

Electronic Engineering

Department

Electronics & Electrical

Communications

Academic level

2nd Year

Course Name

Electronic circuits

Course Code

ECE 223

Date

: 24/06/2019

Time

3 Hours

2

No. of pages:

Full Mark

45 Marks

Exam

Final Exam

Examiner

Dr: A. I. Bahnacy

(برجاء إجابة الجزء الاول من الناحية اليمني والجزء الثاني من الناحية اليسري في كراسة الإجابة)

## PART 1

## Answer all the following questions:

## Question No 1:

(15 Marks)

1-a-What is meant by cross over distortion in class B push-pull amplifier?.

Describe one method to overcome this distortion .

Clarify your answer with drawing.

(7-Marks)

1-b- Find the maximum ac output power, the dc input power and the maximum efficiency of the amplifier shown in Fig. 1. Also determine the input resistance assuming  $\beta_{ac}$ =50 and  $r'_{e}$ =6 $\Omega$ . If the circuit shown in Fig. 1 is replaced by a Darlington class AB push-pull amplifier with  $\beta_{ac}$ =50 for each transistor, what will be the input resistance?, and , what is the advantage of that? . (8-Marks)

 $V_{\text{cc}} + 20 \text{ V}$   $R_1 = 100 \Omega$   $D_1 = C_3 = C_3$   $C_2 = D_2 = 10 \mu\text{F}$   $R_2 = 100 \Omega$   $R_1 = C_3 = C_3$   $R_2 = 100 \Omega$ 

Fig. 1

من فضلك اقلب الورقة

Page 1 of 2

Question No 2: (15 Marks)

2-a- What is meant by class C amplifier?.

Why application of this amplifier is limited to tuned circuit applications?.

(3- Marks)

2-b- A certain class C amplifier transistor is ON for 20% of the input cycle. If  $V_{ce(sat)}$ =0.2V and  $I_{c(sat)}$ = 25mA, what is the average power dissipation for maximum output? Determine the efficiency if  $V_{CC}$ =15V and the equivalent parallel resistance in the collector tank circuit is  $50\Omega$ . (6-Marks)

2-c- Define: Amplifier frequency response - Dominant critical frequencies -

Band width.

(6-Marks)

## Question No 3:

(15 Marks)

For the BJT amplifier in Fig. 2 determine:

i- The low critical frequencies of the input, output and bypass RC circuits.

(6 Marks)

ii- The high critical frequencies of the input and output RC circuits.

(4 Marks)

iii- Draw the Bode plot of the total frequency response and determine the bandwidth.

Consider  $\beta$ ac=125,r'<sub>e</sub>=12 $\Omega$ , C<sub>be</sub>=20pF, and C<sub>bc</sub>=2.4pF.

(5 Marks)



Fig.2 مع أطيب الامنيات بالنجاح والتفوق