Menoufia University	Subject: Reinforced Concrete
Faculty of Engineering, Shebin El-Kom	Code: CVE 411
Civil Eng. Department	Year : 4 4 Year Civil
Second Semester Examination, 2014-2015	Time Allowed : 4 hours
Date of Exam: $30 / 5 / 2015$	Total Marks : 100 marks

- Any data not given is to be assumed

Question 1 (5%):

Upon your study course on design of special concrete structures, state some engineering recommendations for fire save design for each of the following structures:

1- Reinforced concrete high rise buildings
2- Electrical power station
3- Nuclear power station
4- Food and beverage industrial factory

Question $2(5 \%):$

a- What are the factors affecting the fire resistance of reinforced concrete wall with 30 cm thickness subjected to fire with inner temp $=700^{\circ} \mathrm{c}$ and outer temp $=30^{\circ} \mathrm{c}$? show your answer with free hand sketches
b- How can visual inspection be considered and effective tool for evaluate and inspect concrete structures subjected to fire or elevated temperature?

Question 3 (50%):

It is required to make complete design* of a rested water tank shown in Figure (1) with the shown configurations and dimensions. Use all around horizontal beam at top with depth $=90 \mathrm{~cm}$ and width of 30 cm and use a tie link beam if required. Assume the case where the two sections of the tank are full. Assume $\mathrm{f}_{\mathrm{cu}}=250 \mathrm{~kg} / \mathrm{cm}^{2}, \mathrm{f}_{\mathrm{y}}=3600 \mathrm{~kg} / \mathrm{cm}^{2}$.

$$
\begin{aligned}
& \text { * Complete Design = Design + Drawing. } \\
& \text { • يسمح باستخدام جداول الحرسانة وكتاب د. شاكر البحيرى. } \\
& \text { • يسمح باستخدام كود الأمال وكود الخرسانة المسلحة }
\end{aligned}
$$

Figure 1

Question 4 (25\%) :

Figure (2) shows a concrete slab shed with the shown dimensions. It is supported on 3 interior double cantilever frames only as shown. The ultimate uniform load $w_{u}=3 \mathrm{t} / \mathrm{m}^{2}$ and two line loads $\mathrm{q}_{\mathrm{u}}=2 \mathrm{t} / \mathrm{m}^{\prime}$
(a) Draw the expected yield lines pattern.
(b) Find the ultimate moments of the slab.
(c) Design the slab and draw the details of reinforcement. Assume $f_{c u}=300 \mathrm{~kg} / \mathrm{cm}^{2}$, Steel $36 / 52$

Question 5 (25\%)

Figure (3) shows a plan of RC flat slab for a hospital $20 \times 28 \mathrm{~m}$. The building consists of 6 stories and the floor height is equal 4 m . The building is in Cairo, and rested on medium dense soil. The average total working dead load is $1.5 \mathrm{t} / \mathrm{m}^{2}$, and live load is $0.5 \mathrm{t} / \mathrm{m}^{2}$. Assume earthquake force in the shown direction and lateral loads are resisted by shear walls only. According to the Egyptian Code 201 Calculate the following items:
a- Calculate the max. base shear on the building and the equivalent lateral load on each floor due to earthquake in the shown direction
b - Check overturning of the building, and the sliding if the adhesion strength $\mathrm{C}_{\mathrm{a}}=5 \mathrm{t} / \mathrm{m}^{2}$, and frictional angle between soil and foundation $\phi=20^{\circ}$
c- Calculate the center of mass CM and the center of rigidity CR and compute the design forces on walls $w_{1}, w_{2}, w_{3}, w_{4}$

