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ABSTRACT

"It is known that the presence of cracks in structures
introduces local flexibility associated with changes in the
dynamic characteristics of structures. However the nature and
variations of the natural frequencies due to the presence of
cracks, are still under discussion and analysis.

The present work introduces an attempt to ' study the
variations in the natural frequencies of uniform constrained
beams due to different crack depths and locations. A theoretical
and experimental investigation has been made. In the theoretical
analysis, the nature of the cracks and their locations are
modelled by introducing equivalent rotational and translational
local flexibilities located through out the span of the beam.
The numerical calculations of the eigen—-frequencies are related
to various stiffness ratios of these springs. From . the
otherhand, the experimental investigation is carried out-using
Impact Hammer excitation and the Dual Channel Analyzer- to study
the changes in the frequency response spectrums of constrained
beams due to variations in the depth and the locations of
cracks. The results are presented by using a proper fitting
process. The coordination between the experimental and numerical
results are carried out to investigate the equivalent stiffness
corresponding to the depth of crack . Moreover, from the
experimental results the damping characteristics of the cracked
beam are computed by applying a half-power (bandwidth) method.



1. INTRODUCTION :

The vibration analysis Qf‘cracked beams and shafts is one of
the most serious problemswsuch as the case of turbomachinery.
The appearance of cracks in machine elements and structures
changes their physical .and dynamical characteristics. The
initiation of cracks can arise not only as a result of the
accidental mechanical damage and the fatigue strength of
materials but also due to improper environmental conditions and
maintenance such as the occurance of erosion and corrosion. The
lateral vibratory frequencies of single span beams having
various combinations of classical geometrical and natural
conditions moreover non-classical constraints have Dbeen
evaluated.

Rutenberg [1] presented the results of the first three
eigen-frequencies of a uniform cantilever beam with a rotational
constraint at some point. Lau [2] introduced further study on a
cantilever beam with an intermediate set of rotational and
translational springs at some point. Maurize and De Rossit [3]
obtained the fundamental frequency parameters of transverse
vibrations of clamped-clamped beams with an intermediate
translational constraint at various locations. Many researches
utilized finite element techniques for the modelling of cracked
structures and machines. In reference [4] Yuen used a reduced
modulus of elasticity for the damaged element for changing the
stiffness of the damaged cantilever beam. Rajab and Sabeeh [5]
presented analytical expressions and- derived curves relating the
crack depth and location with the changes of the first natural
frequencies. Qian et al.[6] used the integration of the stress
intensity factors for deriving the element stiffness matrix of a
beam with a crack. With the similar approach Sekhar and Prabhu
[7]  derived a local flexibility matrix on the basis of
additional strain energy due to crack. . Another approach was
derived by Dimarogonas and Chondros [8] which modeled a crack at
the built-in edge as a rotational spring. They investigated the
relations between the change in the natural frequencies and both
"the local flexibilities and depth of crack for both a uniform
cantilever beam and clamped-clamped beam. This approach has low
computational effort and efficient results for the cases of
cracked beams. 4

In the present work , An analytical and experimental
investigations have been made for a constrained beam with
various depths and locations of crack. In the present analytical
analysis, the -eigen-frequencies of an elastic constrained
elements with various depths and locations of crack are
expressed' in terms of an equivalent set.of rotational and
translational spring elements. The computational results of the
clamped-clamped beam with rotational and translational springs
at various points are listed in proper graphical forms. In the
experimental work, the crack is introduced successively at
various depths and locations along the span of the beam. The
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corresponding’eigen—frequencies_and amplitudes of vibration are
measured using the Dual Channel Analyzer by utilizing an Impact
Hammer excitation. The experimental results are listed 1in
frequency domain form and the investigated graphs are présented
by using the proper least square fitting process. From these
graphs the damping characteristics due to crack propagation and
location are determined using the half-power (bandwidth) method.
Moreover, the coordination of analytical and experimental
results permits the construction of the mathematical models of
the translational and rotational stiffness of elastic elements.
The values of the elastic elements parameters are determined for
various cases of depth and location of the crack.

2. PRQBLEM FORMULATION :

The partial differential equation of motion for free flexural
vibration of elastic beam is governed by:
4 2
3 Y4 +p A 8 Y2 =0
. 8 x 3t
Where E is flexural rigidity , I is moment of inertia ,
p is material density and A is cross—section area.

EI

For small- amplitude of the vibratory constrained beam the
ordinary differential equation characterized the deformed
vibratory modes of the beam can be derived by the substitution
the trial solution :

Y(x,t) = Y(x) . cos( w t) ,
in the previous equation and the result is that:

4
dY _ LW Y =0

EI 1
dx
Where m = p.A is mass per unit length.
Let consider an uniform beam be divided in two subdomains,
characterized by the spatial coordinates u and v ,as shown in
Fig. 1.

Y station
first second
subdomain subdomain
X
>
N >7
— 3

Fig.1- Beam of two subdomains u and V.

The characteristic equation for each subdomain, where 0=z=l,

.. can be written respectively as:

a v1 2 ‘

EI -mw Yi(u) =0 , 0 <u <zL (1)
d u ) : '
at vy

and E I 2 _mwYalv) =0 , O <v <(1-z)L (2)
d v
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The general solutibhs bfvthe ordiharyvdifferential Eqs.;(l)
and (2) for the first and second subdomains may be given
respectively as : o

Yi(u)= clcOSh Au + Czs‘inh; Au + Cé.;:os Au * Casiﬁ.vlu (3)
and _ o ] S
¥2(v)= ¢ _cosh Av + C sinh Av + C cos Av + C.sin Av (4)
S 6 7 8 .
Here the constants (c ,i = 1,2,...,8) can be related to the
i

type of the boundary conditions by imposing either the geometric
and, or, natural boundary conditions for each subdomain.

3 . CASE STUDY : A Clamped~Clamped beam constrained by a set of

rotational and translational springs :-

Consider a translatory rotational constrained clamped-clamped
beam of total length L, flexural rigidity E, moment of inertia I
and the_material density is p, as shown in Fig. 2. Here KTand Kh

are the transiafidnal and rotational spring stiffnesses,

respectively.
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Fig.2- Translatory rotational clamped-clamped beam.

3-1 . Boundary Conditions:

Here the boundary conditions for the first subdomain are
defined as:

At u =0 : Y1 =0 ay o (5)
du
At u = zL 2., . ’
g1 4 Y; =+S K d 1 0sS = 1 (6-a)
du r d u i
d3Y1
EI — =-S5 K Y1 . 0s=S =1 (6-b)
: du3 t T .t

Where S K and S K are the components of:théTfotational and

translatibnal spriﬁgTstiffnesses, respectively, attached for
the first subdomain.



The boundary conditions for the second subdomaln are:

2
d Yz
At v =0 : gr Y2 - - (1-s ) K, (7-a)
d v2 r dv
d3Y . :
E I 2 -4 (1-S) K_ Y2 (7-b)
3 t T
o d v
- - d Yz . (8)
At v = (1-z2)L : Y2 =0, i 0

Thus the compatibility conditions at the station at which the
beam is divided into the two subdomalns are given by:

_ dyir _ d¥Ye (9)
. Y1 = Y2 y T IV
Taking into account both the boundary conditions (6) and (7)

and the compatibility condition (9). The imposing conditions for
the translatory rotational station can be summarized as :

2 2
dy
pr 9Y _.x S0iET S (10)
2 R du 2
-du dv
and 3 3
;1 U S S (11)
3 T 3
du dv

The imposing conditions for the whole beam contained the
equations (5), (8), (9), (10), and (11).

S 3-2 . Characteristic Equation :

Substituting equations (3) and (4) in the imposing condition
(5), (8), (9), (10),and (11) results a linear system of homogeneous
equations expressed in terms of the unknown constants SRS

[-Dij (M1 [c.l 1 =0 , i,j=1,2,...8 (12)

For a non-trivial solution, the determinant of the coefficient
matrix must be vanished and the frequency equation can be
obtained in the form : '

\ Dij‘(x)\ -0 (13)
where:
D= Dj= 1 »  Dyp= Dyg= Pys™ Dig™ P17 Pr1g” 0
D= Dyy= 1+ Dpy= Dpg™ Dps™ Dpe™ Dpg™ Pog™ ©
Dy = cosh(zB) ,  Dgp= sinh(zB) , D, = cos(zB)
D34= sin(zB) , D35= D37= -1 , D36= D38= 0
D41= sinh(sz», D42= cosh(zB) , D43= -sin(zB)
D44= cos(zB) , D46= D48= -1 R D45= D47= 0

o= 17 -



- ey R . o s _R .
Dg,= cosh(zB)~& sinh(zB) -, Dgy= sinh(zB)- & sinh(zB)
- R _. o iieinfony. B
D53— cos(zB)+—§— sin(zB) , D54— sin(zB) 5 cos(zB)
Dgg= 1 » Dgp= 1 » Dgg= Dgg= 0
D_. = sinh(zB)+-E; cosh(zB) , D __= cosh(zB)+-I; sinh(zB)
61 B3 62 B3
Dgg™ 1 » Dgg= 1 » Dgg= Dg7= 0
. T T .
D, .= sin(zB)+ — cos(zB) , D__ = -cos(zB)+ — sin(zB)
63 B3 ) 64 B3
D71? D72= D73= D4= 0 , D75= cosh(1-z)B
D,¢= sinh(1-2)B , D = cos(1-z)B D78=}Sln(1—2)B
D81= D82= D83= D84 =0 , D85 = sinh (1-z)B
D86= cosh (1-z)B , D87 = -sin (1-z)B , D88= cos (1-z)B
B=AL , R = KR L/E1 and T = KT L3/EI

For the limiting case at which R and T tends to infinity, the
characteristic equation (13) reduced to the classical frequency
equation for the case of the clamped-clamped beam' [9].when z = 0O
and T tends to infinity , equation (13) reduces to the frequency
equation for the clamped-clamped beam with crack at cne clamped
edge as stated in ref. [8].

At any location of the translatory rgtaﬁional constraint,
substituting the eigen- frequency . parameters obtained from
Eq. (13) into the eigenvalue problem (12) to determine the
constants cir(r=1,2,..,5) related to the corresponding mode.

Consequently, the T th mode shape can be ‘then obtained in
terms of the obtained coefficients c;, from equations (3)and (4)
here as:

Yir{u)= ¢ cosh Au +c sinh Au+c cos Au+c sin A u
ir r 2r r 3r r 4r r

and .
Yar(v)=c_cosh A v + ¢ _sinh Av + c_cos Av +¢c_sin A v
5r r 6r r Tr r 8r r

4 . EXPERIMENTAL VWORK :

4-1 . Specification and instrumentation set :

In the present experimental analysis seven specimens with
different crack locations are considered. The seven specimens
steel beams are made of the same material with the same
dimensions L= 800 mm.(where L is the length of the beam) and
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W¥H= 12*12 mm. (where W and H are the width and depth of cross
section respectively). The ends of the specimen are fixed by two
thick steel plates of very high stiffness using the same
procedure of the manual shielded metal-arc welded technique. The
two thick steel plates are clamped with the vertical stands by
using bolts and nuts to ensure proper fixation. The crack was
initiated for each beam with a saw cut and propagated
successively with 1.5 mm.step . At each step the depth of the
crack is checked directly by the measurement. The = crack
locations for the seven samples are chosen at left end, and 0.1,
0.2 ,0.25 ,0.3 ,0.4 and 0.5 of the span from the left end of
each beam respectively. For the symmetrical boundary conditions
at both sides of the beam, the same affect of length ratio
(e.g7Le/L=0.3 and 0.7) with respect to the first mode occurs at
the same ratio of depth of crack, where Lc is the length of the
beam segment to the left of the crack site.

The measurement set includes a fabricated test rig and
instrumentation set-up formed. from excitation and measuring
systems of Bruel and Kjaer products as shown in Fig.(3-a). A
photograph of actual experimental layout 1is shown in Fig. (3-b).
In the figure, the Impact Hammer (type 8202) which resembles an
ordinary hammer but has a force transducer (type 8200) buillt
into the tip to register the force input is used to excite the
sample at mid-point position. A tap with the hammer imparts a
pulse with a broad frequency range to thgh;esg¥s§m3;e,ﬁThis will
simultanepuslyk exciteé all” the® modes of vibration. The signal
from thgaforﬁ% transducer® in the hapmer head isirouted via a
Preampfifiérfio the measurement‘insffﬁMEntatiéhrffhe;line drive
preamplifier (type 2644) can be mounted directly onto:the handle
of the Impact Hammer. The Charge Amplifier (type '2635) is used
to generate the signal from the hammer  to the Dual Channel
Analyzer (type 2034) at channel A. For measuring-the response
parameters, a Piezoelectric Accelerometer (type 4367) is mounted
by a smaller magnet on thé ‘sample. The Accelerometer is
characterized by measuring the displaCément level from 0.002 to
10.0 mm.with natural frequency range upto 29 KHz. The Vibration
Meter (type -2511) is utilized in connection with the
Accelerometer . to generate the signal to the Dual Channel
Analyzer at B. The frequency'response spectrum can be obtained
from the. printer which is supported by -the Desktop Computer
series the Dudl Channel Analyzer. 5 :

4-2. The experimental procedure :

After the calibration of instrumentation sét and the ensurance
of the proper isolation of the test rig from undesired sources
of excitation are established, the procedure of measurements
includes mainly: - ‘ S

-The locations of the Impact Hammer excitation and Accelerometer
mounting points are chosen in the mid-point of the span of the
constrained beam.



i Desklop computer Duat-Channet
Printer Anaiyzet
2034

General Purpose
Vibration Meter

511 Impact Hammer
8202

. 4 mrme— N\

/] \

N

7 N\

4 N

7 N

Acceleromater
4367
]

(a) Schematic diagram of the test set—up(

(b) Overall view of the actual test set-up.

Fig.3- Instrumentation set-up for monitoring the
freguency response spectrum.



-The measurements of a frequency response gpectrum of the beam
without crack within the range O to 800 ‘Hz. is plotted as a
reference of the zone of the natural frequencies and the
associated amplitudes of vibrations.

-At the current crack location, the "depth of crack propagates
increased and the frequency response spectrums at =ach depth
of crack are plotted. . ,

~-The same procedure of measurement is repeated for each crack
locations.

5 . RESULTS AND DISCUSSION:

The computational results can be carried out with several
combinations of rotational and translational spring ratios at
various locations of the presented model. The natural
frequencies of the cracked beam under consideration are
determined numerically by solving the characteristic equation of
the beam; Eq.(13). Figure (4) displays the variation of the
fundamental eigen-frequencies for different local flexibility
locations and rotational spring ratios within the range 1=R=200
and for different translational spring ratioes. For large
rotational spring ratio (Rz120), 1it 1is noticed that as R
increased the frequency ratios are approximately jnvariant. "‘In a
similar manner, Fig.(5) -displays the variation of the
fundamental eigen-frequencies with translational spring ratios
within the range 1sT=200 and different rotational spring ratios
for different locations. From the graphs (4) and (5}, it 1is
clear that the rate of the change of T is relatively large
compared with the rate of change of R. In addition, it is
evident that in the bending vibration mode, the translational
spring element (in corresponding to shear criteria) is play
important role in the first mode rather than the rotational
spring element (in corresponding to flexural criteria). In
general, it is .clear that the frequency ratio depends on the
stiffness ratios R and T.

In the experimental results, the frequency response spectrum
for the typical values of Hc/H ratioc and for various positions
of crack Lc were determined samples of these results for mid-
point position of creak being shown in Fig. (6) from the figure,
it is noticed that for the current depth ratio and length ratio,
the smaller changes of the natural frequencies will be the order
of the higher frequencies. The flexability of the creaked beam
depends also on the amplitude ratio at which the creak occurs.
Based on the assumption of a transverse, surface creak,
extending uniformly along the width of the beam. Figures (7) and
(8) represent graphically the quantitative relationships of
depth and location of the crack versus the change of fundamental
natural frequency. In addition, the variation: c¢f maximum
amplitudes of the first mode shape versus the depth of the crack
were determined . in Fig.(9). In the present, study, the damping
coefficients are evaluated directly by experimental methods. The
half-power (bandwidth) method 1s sufficient and suitable for the -

- 21 -



1.00
690 3 0.90 P
B e 7
s b ° 3
2 4
1 ! _ . LeL=0.00
Foo LoA0.00 Fo.60 N
; 0.25 S ] ¥
5 /4 050 3 R
o o
« o
b be
w “w 3
0.70 3 0.70 4
T=1 ] T=10
: -]
0.60 rrerrrr iy T , 0.60 ‘4 v v g y 1
0.00 5000 100.00 150.00 200,00  250.00 L.X 6000 10000 13000 Z0000  760.00
Rolatlonat spring rolle {R) Rotollonol spting ralio (R)
1.00 +.00 b ———
0.0 1 0.90
2 2 Le/1=0,00
o E o 3 0.28
4 - E 0.50
Y k. P
Fao Faso 3
@ 1 © 1
2 2 3
o o
1) N g
o @ ]
L < [y 3
0.70 § N 0.70 J
] T=100 ] Topir
] ]
Q.60 “jrrrr T v 0.60 T T g oy ¥
000 5000  100.00  150.00 200,00  250.00 0.L0 5000 100.00 © 15000 20000  240.00

Ralationol spring rolla (R)

Fig.4- Variation of the fundamen

various values of T and

Rolollongl spring rofle (k)

tal frequency with R for
different locations.

0.90 7
’/‘
3 /’///
0.00 3 /
3 ,6
2 3
2 3.
o e Le/L=0,00
20.70 3 popel
F 3 0.50
[~ 3
5 E
70,60 -
@
uw 9
0.50 4
E R=10
] ] ‘
403 v 0.40 3+ T v v T
000 5000 100.00 15000 250. 000  $00C  100.00 15006 200.00  240.00
g 7I¢n|loﬂo«¢| spring ralle (7) Tronsiallonal spring tatle (1)
1.00 100 4 —-
E E =
E P 7fgf¢’
.90 3 P 0.80 7
.2 1 (<]
2 3 .2
[LLF £0.80 3
A A
§
3
50.70 ] 50.70 4.
|‘.’ E E 3
v w g
0.60 3 0.66 3
E R=100 E R0
0.50 Jyrrrerreey g T - 0.50,
000 5000 10000 15000 200.00  250.6¢ 0.00 5000 100.00  150.00 200000 250.30

Translational spring ratie (1)

Tronalatienal spring totie (T)

Fig.5- Variation of the fundamental frequency with T for
' various values of R and dlfferent locations.

--22



.
M2 FREQ RESF W1 BAG IHPUT Q'aiuss “  13.748
' AR

M12 FPFO RESP M1 Han tupye naln_ o 44 948
7 X Az
H: x
Y%: OQHZ + 3Q0M: LN

A %

UHT + 200H: LN
w5 o HE/HRL, 500

He 7H=0, Q00

L |
Wl
Wiz FREQ RESP M1 mAC WAIN ¥: 16 78 Nir FEEa RESF Mt i Tuent
%: QOWz o 800Mz _ LIN X' 20m: L akx - 800k:  Lin
SETUP W12 A % Ha/H=0. 1235 L L
L
- 4 4
. { ]
Di2 FREQ RESP K1 MAC THPUT BRIN Y. 23,640 me2 FREQ RESP K1 Mg HEUT mAln v 36448
X:_ OHz * 800Hz _ LIN N . Xi o 64mz
SETUr W12  eAr S . Ha/H=0.250 £, Ouz v aogye  LIM He/Han. 750
|
X
) Fi t L = S ll ‘[
d 4§
Uiz FREQ RESP WY MAG T mAIM Y. 33048 SETUP W12
0 . . ' z
Il oHe ¢ soomz  LiM MERSUREMENT: QUAL SPECTRUN AYERAGING
|+ soguz TE1GGER: CH.R +s CEVEL: +0.02 HAX EHPUT
a3 He/H=0.375 DELAY: TRiG+A: -3.170¢ CH.A3G¢ 0.00ns
RYERACING:  LIN 100
FREQ SPAN:  1.6kHz  aFt2H: Ti500es  aTi2440i
CEHTER FREQ: BASEBAND
“WEIGHT CH.Av TRANSIENT  SHIFT+0.00ss LENGTH 196, 19as
REICHT CH.8+ EXPONENTIAL SHIFT-0.00ms LENCTH 144 . 04ns
gt o A
; woe 20 +25.6kHz  10.0aV/
CERERATOR:  OISABLED e

Fig.6- Frequency response spectrums for the'various values
of He/B ratio at the mid-point location of the span.

1.05 5 : 1.05 7
] He H=0.00 3 Hc/H=0.00 .
b 3
] T—
088 3 0.95 3 \\
] 3 0.25
[o] k o .
% 3 b 3 \ \a\o
o 3 Q 4
e - — o, A
&o.85 3 Fo.8s ] X .
S 1 ) ] ' \0.50
2 p a_ 3
o p 4
2 7 ° . -
w 3 w ]
0.75 ] . 0.75 A .
] ] 0.75
: E *
0.65 e T T T T T T -3 I———————— L R
000 0.10 0.0 0.30 040 050 0.0 040 010  0.20 0.80  0.60
, Length rotlo (Lc/L) Length ratlo {Le/L)

Fig.7- Variation of the fundamental freguency of cra§ked beam
versus the depth of crack ratio and the‘locatlon of

crack ratio.



1,05

.95

Frequency ratio
o
)
o

0.7%

e
o
PR

Fig. 8— Varlatlon of the fundamental frequency of cracked beam
versus the location of crack ratlo and the depth of

Fig.9- Variation of amplltude ratio at various location of

- —_— 1.05
3
3 0.95 §
] o ]
1 LesL=0.00 b 1
: e - <4
. 30,85 ]
1 € ]
; -
] 0.25 ES ]
1 g ;
] o 1
] b ]
b 0.75
E 0.50 ]
] ]
...... T T I 0.85 For
00 020 080 1.00 0.00

0 0.6
Dopih raflo (He/H)

crack ratio.

030 - 040 0.60
Doplh rolto (Ilc

3.00

4.00 ]

g
Q
Q

g
=3
(=]
TUERTRTT YRS TSN

Amplitude rotio

o
=1

A1

Le/L=0.80 .

0.25
o

000

o
3

00 0.20

=4
o

040 0o
Depth ratlo (He/H)

\Raas MUARAR R LSS

0.680 1.00

crack ratio with various depth of crack ratio.

Domping ratio x
N
8 8

8

LesLw0.50

040 0,60
Depth rotlo (He/i1)

080 1.00

1.00

Fig.10- Variation of damping ratio at various location of
crack ratio with various depth of crack ratio.



light damping ratio less than 0.05 as shown in Ref.[10]. The
damping ratio of clamped-clamped beam with various depth and
location of the crack were measured and the results being shown
in Fig. (10). " '

The proper fitting curves for the experimental results are
obtained by the use of least square fitting process and the
results :

1- Linear form as: Y = A1 + Az2.X
where Y and X represent frequency ratios and (L¢/L) or (He/H)
respectively and :

2- Exponential form as: Y = A1.Exp(A2.X)
where Y and X represent damping ratios % or amplitude ratios and
(Hc/H) .respectively. The coefficients A1 and A2 are tabulated as
shown in tables (1) and (2). '

In figures (7) and (8) it is shown that the frequency of
vibration is linearly decreases with increasing the depth of
crack for the example in case of Lc/L=0.5 and Hc/H=0.75, the
frequency of. vibration is 0.71 times smaller than in the case of
vibration without crack furthermore, the variations of
measurement of maximum amplitudes of the first mode shape are
increased exponentially with increasing the depth of crack, as
shown in fig.(9). For the example 1in case of Lc/L=0.5 and
He/H=0.75, the amplitude of vibration is 4.6 times bigger than
in the case of vibration without cracks. It should be observed
that for small cracks (e.g. for Lc/L=0.0 and Hc/H=0.125 and even
for Lc/L=0.2, Hc/H=0.25) the changes of amplitude of vibration
and of the frequency are relatively small compared with other
‘locations and depths of cracks. The fundamental frequency
decreases when the crack occurs close to the middle of
considered beam where the maximum amplitude of the mode shape
occurs. This is expected since maximum amplitude at the first
mode occurs at the crack location. It is clear from Fig. (10)
that the damping capacity of cracked beam increased exponential
with increasing the depth of crack (e.g. for Le/L=0.5 and
He/H=0.75, the damping ratio is 2.5 times bigger than in the
case of vibration without cracks), since the larger depth of
crack, the larger amount will be the dissipation of energy.

 Table (1): Coefficients for linear fitting results

Fig. (5) - - Fig. (6)
Hc/H A1 A2 Le/L A Az
0.000 1.000 0. 000 0.00 1.006 ~0.176
0.125 0.988 -.089 0.10 1.001 | -0.187
0.250 0.968 -.136 0.20 1.001 .| -0.223
0.375 0.952 -.215 0.25 0.999 | -0.273
0.500 0.927 -.253 0.30 0.999 ~0.287
1 0.625 0.907 -.295 0.40 0.998 -0. 333
0. 750 0.885 -.314 0.50 1 0.995 ~0.385




Téble;(ZJ: Cbéfficients for ekponential fitting’reSulté'v

Fig! (7) R " Fig. (8)

. Le/L A1 A2 Lc/L A1 A2
0.00 0.979 1.606 0.00 1.735 | 0.787
0.25 1.031 1.684 0.25 1.794 1.006
0.50 1.044 2.019 0.50 1.831 | 1.226

Under the similar boundary conditions, the experimental and
numerical results, one can made an coordination between these
results to investigate eigen-nature of the cracked beam. For the
cracked present model, table (3) was constructed relating
directly the depth of crack to the equivalent stiffness ratios
at different locations. From the experimental results shown in
Fig. (8), it can, found that the effect of the depth and location
of crack on the frequency ratio have linear nature with
monotonic decreasing trend. On the obtained, from the ‘graphs in
figures (4) and (5) at the same frequency ratio, on can be
determined successfully the equivalent stiffness ratios and
damping ratio; see table (3). The results is that the increasing

Table (3) : The coordination between the depth of crack and dynémic
characteristics for different locations (within 1=R & T=200).

Equivalent stiffness ratios
Length Depth - Damping
ratio ratio R=1 T=1 |R=10 |T=10 [R=100 [T=100 |R=sw |T=3e | ratio
(Lc/L) (He/H) ‘ %
T R T R T R T R
- 0.00 0.125 ' 82. 1.90
0.250 169 | 58 2.05
0.375 195 129 | 43 2.30
0. 500 77 83 | 27 2.55
0.625 190 156 53 61 19 2.85
0.750 89 | 200 69 109 38 45 14 3.20
0.25 0.125 . 177 | 65 2.01
0.250 ) 125 | 45 2.25
0.375 : 128 65 76 | 26 2.56
0.500 87 | 200 68 116 42 52 18 2.95
0.625 180 56 132 44 72 26 35 12 3.40
0.750 115 34 82 27 42 15 22 7 3.85
0.50 0.125 ' 142 | 52 2.12
Q. 250 183 71 89 | 33 2.50
0. 375 63 147 | 49 85 33 45 17 2.95
0. 500 148 38 | 95 30 51 20 29 11 3.35
0.625 96 23 ' 60 18 31 12 181 7 3.95
0.750 © 64 14 40 11 19 7 12 5 4.55




the depth ~of  crack decreases both the rotational. .and
translational spring ratios. From the practical point of view,
the present method can be developed as "a useful tool for
" prevernitive maintenance and = non-destructive testing of
structures. The quantitative dimensionless results given in the
present study are strictly applicable to a particular case of
simple geometry, but accordingly can be applied to individual
members of large structures. For the general case of a complex
structure, the structural analyst however can use this analysis:

as a guide to obtain quantitative results.

6. CONCLUSIONS :

Experimental set-up and mathematical model for investigated
the effects of crack propagation and its location of clamped-
clamped beam on the fundamental frequency, amplitude and damping
has been studied. In addition, the present method provides an
efficient non-destructive tool for testing each individual
components of any mechanical system. The following, summarizes
the conclusions drawn from the analytical and experimental
studies and the coordinations between them :

1- The influence of crack on the eigen—-frequencies and corres-
ponding amplitudes with respect to the uncracked beam, depending
on the location and magnitude.

72— The fundamental frequency ratio decreases linearly when the
crack occurs close to the middle of clamped-clamped beam where
the maximum amplitude of the mode shape occurs.

3- The damping capacity of cracked beam are increases expon-—:
dentialy with increasing the depth of crack (due to the
dissipation of energy).

4- In the bending first mode the translational spring elements
have dominant affect compared with the rotational spring
elements.

5- The coordination between the experimental and analytical
results to determine the equivalent rotational and translational
stiffness due to crack propagation 1is becoming stronger due to
the introducing of suitable hybrid analytical-experimental
approaches.

REFERENCES

[1] A. Rutenberg, (1978) "Vibration frequencies for a uniform
cantilever with a rotational comstraint at a point." J. of
Applied Mechanics, 435, pp 422-423.

[2] J.H. Lau, (1984), "Vibration frequencies and mode shapes
for a constrained cantilever." J. of Applied Mechanics, 51,
pp 182-187.

[3] M.J. Maurizi and D.V. Bambil De Rossit, (1987) "Free
vibration of a clamped-clamped beam with an intermediate
elastic support.” J. of Sound and Vibration, 119(1),
pp 173-176. . :



(4]

(5]

(6]

t7}

. vibration characteristics of cracked shafts.” J. of Sound

[8]

[9]

M.M.F. Yuen, (1985) "A numerical study ‘of the eigen-
parameters of a damaged ‘cantilever." J. ‘of Sound and
Vibration, 103(3), pp 301-310.

M.D. Rajab and A. Al Sabeeh, (1991) "Vibration characte-
ristics of cracked shafts.”" J. of sound and Vibration, 147,
pp 465-473.

G. L-Qian, S-N. Gu and J-S. Jiang, (1990) "The dynamic
behaviour and crack detection of a beam with a crack." J.
of Sound and Vibration, 138, pp 233-243.

A.S. Sekhar and B.S. Prabhu, (1992), "Crack detection and

and vibration, 157(2), pp 375-381.

A.D. Dimorogonas and T.G. Chondros, (1980) "Identification
of “ cracks in welded joints of complex structures." J. of
Sound and Vibration, 69(4), pp 531-538.

R.E.D. Bishop and Johnson, (1979), "The Mechanics of
Vibration." Cambridge University Press.

[10] K. Zaveri and M. Phil, (1985), "Modal Analysis of large

Structures." Brul & Kjaer.'



& 58l ) sagi e S Saalinl) o1aYY Al 5o

gl ue jale .\A;‘\/..\.\

Iy pLia 2ena [ s piE (papa 3

Lad 5 judasdl JSLGal) (ye cilaSlall 2ol 585 oV jal s cliiall b g g il ) seds 3
L5 SN Gl i il Aais Syl Ll (3l S m Ban

o sadall Glie S (Saatial) ol o Lglan 5 & 5 il g5 58 4 el
Sfial o3y« (anlly g sall Audlina & 5 5o I3 sade liel o agles 5 4y ki Al 5
Al gy« e jaianall g A8 Y UL e Wil e ganay ¢ g bl (pualy I 23 gall
ey - Ao sl F gl @l Glied dpagdall s il ualsd Al slagy clad
il Ao gana dLadY) Couiy cilaajilly dualsll il Jidais (el o Alaell Al
el g g gall b Adliaa & 5 5 0l Bl Qe e Abilaa

20 ill Aagi o Jaa st ( fitting process) aladiuly da s CADAe prlidial o3 3 5

e il g il G 53L5 aa OB (A g8l Sld Badal) Qe g gagdal
T lDe U 5 LS . dglad ADlay ¢ 55 (9% o3 gt il fnl) i
£ G 8aLy) g il 31 JiaY) dlad) S dnlalls abaadl 831 FaY) A 8ok O
il g Cadall il o Al Cudig e g Ay al) Cial) Chisliie (ye )il

ol Gasy gl el S L S Jalaa o i Alend

@y LSl ol aly cliid dilpay HasY A8 e Ay o ol s fal N

dglaall il g Calall 20 o day )l plasiuly & 5 5l

- 29 -



