

Nonlinear Control Systems, Third year, Industrial Electronics & Control Eng., 27/5/2019

University: Menoufia

Faculty : Electronic Engineering

Department : Industrial Electronics &

Control Eng.

Academic level: 3rd Year

Course Name : Nonlinear Control Sys.

Course Code : ACE 321

Date : 27/05/2019 Time : 3 Hours

No. of pages: 2 No of Quest: 4

Full Mark : 70 Marks Exam : Final Exam

Examiner : Dr: Hosny Shohla

Answer all the following questions:

Question No 1: (20 Marks)

For the system having a nonlinear element as Thershold with dead zone and linear transfer function as shown in Fig. (1),

Fig. (1)

- a) Determine the *describing function N* of the nonlinear element.
- (10Marks)
- b) Determine the value of the gain K_I of the linear element required for oscillation with magnitude U = 8, and corresponding frequency where the slop k = 0.5, h = 4, and u is the amplitude of the input signal. (10 Marks)

Question No 2: (20 Marks)

Fig. (2) shows the block diagram of a servomechanism, with assumptions b = 1, K = 1, $K_n = 1$, $K_m = 0.7$ sec⁻¹, and $T_m = 1$ sec.

Fig. (2) Block diagram of a servomechanism

a) Determine the singular points.

- (5 Marks)
- b) Determine roots of the auxiliary equation and the shape of the trajectory. (5 Marks)
- c) Draw the *phase portrait* (e Vs. \dot{e}) using the *Isocline method* with initial condition (0.8,0) for step input r(t) = 0.8 (10 Marks)

Page 1 of 2

(See another page)

Nonlinear Control Systems, Third year, Industrial Electronics & Control Eng., 27/5/2019

Question No 3: (10 Marks)

Draw the trajectory of the system,

$$\begin{aligned}
 x_1 &= x_2 \\
 x_2 &= -5x_1 - 2x_2
 \end{aligned}$$

Which passes through the point $x_1 = 1$ and $x_2 = 0$

Question No 4: (20 Marks)

Consider the following second order system described by:

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

- a) Find a *Liapunov function* for the system, and examine the stability of the system.

 (10 Marks)
- b) Obtain an upper bound on *response time* that it takes the system to go from a point on the boundary of the closed curve V(X) = 120 to a point within the closed curve V(X) = 0.2 (10 Marks)

Achieved ILOS:

Question No		Q1		Q2			02	Q4	
		a	b b	a	b	c	Q3	A	b
Achieved II.Os	A- Knowledge & Understanding	al	a8	a1	a8	a15	a1,a8,a15	a15	a15
	B- Intellectual skills	b1	b2	b1	b2,b3	b12	b1.b2,b12		
	C- Professional and practical skills	cl	c18	c1	cl	c23	c1,c23	c12	c12
	D- General and transferable skills								