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ABSTRACT.

Plane steady Couette flow at low Mach
number is studied in the presence of porosity.
An approximate solution to the Boltamann equ-
ation, of modified Liu-lees type, i8 found to.
yteld simple analytic expressions for flow
velocity distribution, mean veloeity and shear
stress. These predictions give good results
in both the continuum and rarefied limits.

l)Iﬁtroducﬁion:

| The theory of interaction between gases and solid
surfaces is far from being in its final stag: Many authors
such as (Sheélovskii .1967), (Kogan 1969), (Chapman & Cowling
1970), (Khidr 1970), (Cercignani 1975), (Hady 1976), (Johnson
19825, (Mahmgud 1985) made successful demonstrations'bof the
gas flow  us£ng Boltzmann kinetic equation, specially in the
study of Couetté compressible flow between two solid parallel
walls. Various‘models had been suggested, but the simplest
of them takés the gas-surface interaction in the form of a
tangential accommodation coefficient with respect ﬁo momentum.
Different efforts had been doné in impésing‘ the conditions at
the boundaries, however ;hey are not enough in descfibing a

variety of phenomena that demand further predictions.
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1

in the works of (Hady 1976) and (Mahmaud_198$) the equations
of transfer are used to describe the preblem of Couette flow
in rarefied gases with porosity, they open 'a large area of

study to follow this effect.

2)Setting up the problem:

In this paper Couette cempressible flow in the absence
of external force and with porosity is discussed .on the
assumption that at every point of the flew the gas is in a near-
equilibium state. Then the mean velocity and the mean relative
velocity of thermal motion are of the same order, But we shall
distinguish between them belew enly for the sake of giving

the agreement with the real flows.

' For simplieity it will be assumed that the f{low is gentle i.e.

the Mach number.

M=o, UK 1
Where a«, = (2RT )1, T is the constant temperature at the
walls, U/2(=U/2) 1is the veiocity of the upper (lower) wall
in the #-direction, d 1is the distance betwéen the wélls and
y=+d/2(-d/2) 1is -the equation of the upper (lower) wall. To
investigate the effect of porosity one considers that the gas
flows out from the lower and upper walls with velocities v, =-aU

and V2=bU;a,b>O.

The relevant Boltzmann equation governing the present problem

is

h

c Lo (1)
y .

«
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On the theory of plane Couette flow with porosity,

Where I(f) is the usual Boltzmann collision aperator. Because
shear is assumed to be week, it is reasonable to linearise
the number density distribution function f about the zero-

shear Maxwellian:

' 3
/2
£,=n (a,/m) " exp [-a, (c - v)?] (2)

o
Where n is the constant density number.

To obtain an approximate kinetic-theory solution to eq.(1)
one may use the B.G.K. equation with which a molecule tends

to relax to local equilibruim after a single collision. Thus

e 55= 1(6) » L2RL (¢ . ), _ W

i.e. the processes of transfer of molecular quantities depend

appreciably on the mean free path 1,

One may iook for a solution of eq.(3) by the approximation
method of (Liu & Lees 1961)., The method consists in réplacing
the exact distribution function by a two stream Maxwellian.
For plane Couette flow with no external force and the above

mentioned geométry, one has.
- N ’
fE=1f 0(-c )+ £ o(+c ).
y y

Where @(jpy) is the Heaviside step function:

l:¢c >0
y

(e )=1{ 0 : <0
cy) { cy

3 =0
% Cy

F :
and £ are chosen to be

3 ) :
- /2 . .
£ =n (o /7) (1+V1 cy/RT) exp -ao[(cx-vx1)2+cy2+cz2] rc_<0.
£ = (a_/ )3/2 . *+c_24c 2 o)
= n (o /y (1+V2 cy/RT) exp -aol(cx-vxz) +cy +c ?] :cy>0.

. 181



Aboutabia

Here"vxl,vX2 are y-dependent parameters determined by the
requirement that f satisfies a suitable number of (lower order)

moments of the governing equations.

In this problem, one wants to predict the flow velocity -

distribution, the mean velocity and the pressure deviator.

3)The  boundary éonditions:

As iﬁ was said in the introduetien, ve aésume diffuse
plus specular reflection at the boundaries with coefficiénts
el(ez) at the lower (upper) wall. USihg fgn@tf@ﬂs (4), it is

desired to integrate four equations of the form.

+ o - e -+ .
f (1 61’2) £+ 61’2 fs],:2

with respect to c - Where
£ =n (a/ )3/2 [1+v c /RT)exp -o [(c + ﬂ/é)%c 2+c_?)
sl,2 o! W 1,2 7y P rolie s T y ‘z .’

Hence we obtain, at the lower wall

= LY = - tony L ou. (
-+ - .
vy (F8) = (1 - el) Vi1 ()= e ‘ | (6)
at theupper wall
v Cp=(1-€)8"Y v (e, 7
x2° ¢ 1 x1° *# 2° v : ~
T (L Y=(1- + (1 1
Ve C=(1-) v G ey, (8)

Where y and both Vel.2 V1 é are nondimensionalized with respect
3 ]

to d and U respectively.

Here V. indicate the upword and downword velocities in either

half space ygo.r The suction f&ctor S is‘equa} to.
S = Csk b/ 1) Cst va/n )7L,
182



On the theory of plane couette flow with pwrosity.

The solutions of the system of equations (5-8) are obtained

in terms of the arbitrary coefficients € £, and S

vy (mley(leg,)sme 1 2Ce heyme 6,01 T (9
vIl(-—i/z)={(1-sl)[(1-62)628-5152]-51][2(51+52-8152)v]-1(10)
V:z(%),=[€2$-(1-51)€1][25(€1+€2'51£2)]-1 . ‘(11)

-1
L)= - - - - -
vxz(‘z) {EZS[1+61(1 g) =g (1-€,) (1 ez)}lzsgel-»ez e1€,)] (12)
They are supplemented by another set of boundary conditions
concerning. the mean velocity at the lower and upper walls
[Chapman & Cowling 1970]: ‘
LySe + 1 - _' Ty
v (3> fé[vxl( 4)+vx1( %)ﬁvxl( %) -u VT Knd vx/ay(13)‘
+ - + y r
v, %)>=‘2[vx2(%)+vxz(5§)]=vx2(3§)+u (:r Kndv /3y  (14)

Where 9v/3 y is the constant velocity rate between the two wallé,

u is a constant of order unity and the Knudsen number Kn= V7 1/4d.

4)The characteristics of the flow:

The determination of v, @and sz are obtained by
demanding that two moments of eq.(3) be satisfied, those taken

with respect to ¢ and ¢ ¢ ,
y .y

+ o+ + + .+

V2 Vart Y (v, mavi )= a= (15)
B  Vn (v bavs )ubte &
VotV m(bv o+av ) )=F"- "oy (16)

Where Y is related to the Mach number by the expression Y=vTM

and § is the degree of rarefaction =(Kn)-1.

The constants of integration ai, Si should be calculated at
the boundaries (the walls) y=+%, by solving eqs.(15) and (16)

simuitaneously using the conditions (9-12), thus
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N | _
vV, (9)= ClA1A3{ C, + C, [A2'6y9(+y)]} | (17)
v, (y)=CB; 3{ 02 - 93 [§2+6ye(-y)]} o  §18>

Where

C.=(a4B.-8) L, =B~ %, ) (A A L Cora- &) (8,8,) I, (o)

17827 v DT BT 2 788, %2 TG V98815, %1072
; -1 - 1t :

C,=(a,45) v, , ()= (B By) "V (-3¢), Al,Blé[*ﬁy(a,b)/w],

A,,B —(/+y(a b)/m ][+ v(a, b)] and.
=[1+ y(a,b)] [ty (a, b)/"] [1+ v(b,a)] g+ y(a,bY | +

+ [1+ v(a,b)] g+ Y(b, aMrl

A3,
-1

In this study we deal with a problem of nonsymmetrical nature
because the differences between El' ﬁz aud Vl’ make, for
instance, (y)* v ( -y) this implies that the flow veloc1ty

is nonzero at the line y=0,
Of interest are the three following quantities:

(i)The flow velocity distribution function:

The mean relative velocity 18 defined by

<v12(y)> = <vx2(y) - vxl(y)>.

It could be correctly written to fullfil our requirements as

(Y)> (y)) v, (y)>.

This relation in turn 1s equal to the flow velocity ratel av (y)/ay']y-
‘Therefore, from eqs.(17) and (18) .after some manlpulatlons'

we get.

[avx(y)/ay]y=cl{ <c,> (A 13133)+<c >[(a,A A+B B,B3)-

3 17273 7172

(19)
-8 (A1A3 e (y)-B,B;0(*y))yl}
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On the theory of plane Coéuette fléw with porosity.
R
Integrating éq.(19)}‘with tfesééct. to y to obﬁain the velocity

d1str1but1on funct1oh in plane Couette. flow with porosity.

' v (y) ¢, {p Jn y- 6<c >[A e(y) B B0(-p)lyhe,.  (20)
Where D=<C. (3 A"-B B }+<c >(A A»A§+ElBZB3)’, and
C4 is undetermlned constant.

From eq.(20) vx(y) is’ a nonlinear function of y.

(ii)The mean velocity:

The mean x-velocity i§ determined by eq (16) in the form
+ , .
VT(y)=c, (A,B, )" [A’ A +s’ B, ][c— c3 Gy]
The plus (minus) sign indicates the mean velocity of the upwords
(downwords) golng molecules._ A ‘mOte accurzte result can be
obtained'by’averagiﬁg i.é} »
V(y)=5vH(y)+v (y)]=c1(A13'1) [A’ A +32 B, 1<C,>-<C >cy]
(21)
Where »
<c2>=gc2(%:)>+<.c2(-ss)>, <C;>=<C,4 (%)> - <eg(-35)>
<C,(e>=(B,-% 8)(A,,) V0>, ete... It s
seen that V(y) is a linear function of y.

(iii)The Pressurevdeviatior:

The pressure deviator is defined by P =m Je_c £ d€ or in the
v : T Xy Xy ' '
final form.

Pyy=C {(a+b)[,A Ay - By By )(<c">-<c ">6y)+’<<: >(A +B,B B,)1

3~ By 3 Ayhy 1%2%3:

-y (b- a)/zﬂ[(bAlA +aB 185 )(<c >-<¢ >6y)+<c >(bA Ay, -aB, B, 2 3))}

L (22)
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5)Discussion and compair:}sorjis with othér results:

The situaﬁion' studied here is a matter of proper
conditions that are imposed at the boundar1es We shall discuss
the dependence of tthlowveloc1ty function, the mean velocity,
and the coefficient of viscosity on the normal velocities and

the degree of rarefaction.

b
i)The effect of nonsymmeffy of the flow with respect to the
line y=0 as a conéequence of 'different suction velocities and
diffuse reflections at the walls may be reduced to the case

of symmetry by taking a = b and €) €, "<, and blet y=0

in eq.(19). This gives

Which means that <v(%)> = <v(-%)>=Y€. Therefore
<vx2(0)> = <vx1(0)> (23)

as it should be expected.

ii)At the boundaries, the flow velocity rate can be obtalned
on one hand by subtracting eq.(13) from eq. (14) On the other
hand by subtracting the equat;ontﬁcpmposed of -ﬁ[eq.(7)+eq.(8)]
from that composed of %[eq.(S);eq;(G)]. ;“Thus comparing the
two results yields | |

av(i%)/ éy=[A+B+CJL'1. _ (24)
Where | |

y1,47 25(e b ) (e e e, z x_s:[jﬁ(i-,,re,)r_e - s][(1+e »+5(1-e,)]

c=[ 28(1-¢ ) ~-€ ][S(1+e )+(1-E )] L-SunﬁrKn S(e +52-e )

As 8§ = 1 i.e. at equal porosxty

4he absence of it eq (24)

reduces to.
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On the theory of plane Couette £low with porosity.

av/ ay=l1-4(epre)) ) uhn Kal(2-e))/ e 4(2-e)) /6,070 (25)

also, the subtractlon of eq. (6) from eq.(7) and eq (5) from

eq (8) glves as §= 1

xz“/z?"’I (f)=t(e+e)). ~ (26)
IORME LIRS 2D

Which means that the relative upword:. and downword velocities
between the walls are equal and constant. deing up eqs.(26)

and (27) gives the expression.
LY>=<; ;1 = = +
v, (8)> v (3> 1(El+ez) av(s) /3y, A(28)
* Comparing eqs.(25) and (28) one finally obtains

dv (+z)/3y (1+u/m Kn[(2-¢ )/e +(2-¢ )/e ]) (29)

Taking into account the second factor of symmetry i.e.

£ 1=82,

[Chapman & Cowllng 1970].

eq.(29) leads-in dimenssionalform-to the known result

9v/dy=Uld+2u 1 ('2-9)/e]~1
When the gas is dense, Kn + 0, the flow velocity tends to the

hydrodynamic limit vx=(y/d)U.

(iii)Refering to eq.(19) in the absence of pofositi we have
[av(2y) /ayly=(1-6) " (1- 8l o(y) - e - y)]y)av(""%)/ay,
by vertue of eq. (29) we get
[3v(iy)/3y]y=(1-§)f (1-8[0(y)-0(-y)]y) (1+u /ﬁKn[(2f€1)781+(2-ez)/22])-1
| (30)
Two limiting cases arise.
a)The Very dilute gas Kn-> e (6-*0) givesdv(Xy)/a v = 0 which implies

that v(iy)=v°; Where v, 1is an arbitrary constant. ) :
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b) The very dense  gas, the contineous gas, Kn = 0 (8 +)

gives from eq.(19) the flow velocity rate in elther ‘half
space ¥y § 0 : |
av(ty)/dy = 0(y) - 8(-y), by integrating
vx(y) =y+v
This shows that thke flow veloeity is linear. Cases a&b
[see fig.(l)] agree respectively with the zeroth-approximation
- fhe Knudsen ‘collissienl@ss gas- and the ({first approximation
- the Navier . Stpkes equaﬁions - of the | hydredynamic

equations’ for hard  sphere model in & contineous gas

derived from Boltzmann equation.

(iv)In the case of a contineous gas .8 - « and the absence of
porosity the mean velocity emeunts to V(y)=y. This simple
relationship 1is similar to that predicted from the £irst
approximation of the hydrodynamic equatiens or the Navier-Stokes

equations.

(v)From the general expression of the mean velocity eq.(21)
one can determine the slip veleeity at the upper wall.

v_ (o= ()

It is plotted agaimst l-the suction factor 3§ for constant degree
of rarefaction & . It seen from fig(2a) fhat Vs(%) ‘behaves
nonlinearly as it approashes to the transition region §=1,
and‘ linearly for both contineous and collissionless gases.
2-The degree of rarefaction & for constant suction factor S.
It is shown in fig(2b) that Vs(%) increases nonlinearly in

the rarefied region, it sharply drops down to a minimum as
188 ' -
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Fig.(l) a) Kuudsen gas (Kn= we )}>
" b) Navier-Stokes gas (Kn = 0).
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On the theory of plane Couette flow with porosity.

8§ » 1 and then increases to a saturation as 6 -+ w, The peculiare
behavior of the flow in the transition région‘ is facing the

researchers, it needs further investigations.

(vi)For nonporous walls the shear stress (22) 4ud the coefficient
of viscosity 11=ny(3v/8y)—l vanish. - This is éonsistent with

the result obtained by [Mahmoud 1985],

Final Comment:

The approximate results obtqined here,
eqs.(19),(20),(21) and (22) give  physically  reasonable
interpolations between Couette flow behavior for unrestricted
gas density an& the conditions of nonsymmetry imposed at the

walls.

Of Course the easier way whould be to derive the boundary
conditions and the transport equations from a kinetic picture
rather than from the successive approximations of the general

hydrodynamic equations of nonuniform gases,
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