# OPTIMIZATION AND SIMULTANEOUS DETERMINATION OF ORGANIC ACIDS BY NON-SUPPRESSED ION CHROMATOGRAPHY AND ITS APPLICATION ON SOME MEDICINAL PLANTS (PART I)

#### Shaker J. Azhari

Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, P.O.Box 7605, Makkah, Saudi Arabia

(Received: 19 / 6 / 2005)

# **ABSTRACT**

A non-suppressed ion chromatography for the determination of some organic acids is proposed. Eight organic acids including, formic, acetic, ascorbic, succinic, lactic, citric, tartaric and oxalic acids were separated and identified. The separation was achieved on an anion exchange column (Shim pack 1C A1, 4.6 mm IDX 100mn) with a mobile phase consisting of 2.45 mM phthalic acid, 2.35 mM of tris- [(hydroxymethyl-) aminomethane and 0.2 (ethylamino) thioxomethyl] N-{[ mM of hydrazinocarbonylmethyl) trimethyl ammonium chloride (ETHTC). The purpose of this work is to improve the analytical parameters and to characterize the simultaneous determination of organic acids by non-suppressed ion chromatography to routine analysis. The proposed method has numerous advantages over the other widely used: shorter analysis time, lower quantization and detection limits. The performance characteristics of the method were established by determining the following validation parameters: precision, accuracy, linearity, detection and quantization limits.

Also, the proposed method was successfully applied for the separation of some organic acids from some medicinal plants including mentha vridis, mentha longivolia, origanum majorana and cymbopogon winterianus which are existing in different places at Saudi Arabia.

#### 1. INTRODUCTION

The determination of organic acids in medicinal leaves is very important. Their presence and relative ratio, in fact, can affect the chemical and sensorial characteristics of the matrix (e.g., pH, total acidity and microbial stability). In this context, organic acids are measured [Timpa & Burke (1986); Gansedo & Luch (1986); Wilson et al., (2002); Palmer & List (1973); PaLMER, (1955); Bengtsson & Samuelson (1972); Bengtsson & Samuelson (1971) and Saccani et al., (1995)] using enzymatic methods or liquid chromatographic techniques. Also, it has been reported that the negative peak influences the determination of acetic and lactic acids for alcoholic drinks [Ding et al., (1991)] or ascorbic acid for tea samples. In order to resolve these problems, a mixed eluent of 2.7mM of phthalic acid and (2.2mM tris + 0.2 m M of ETHTC) was used in our studies. The traditional HPLC techniques with rejection index or UV detector not always allow the separation of minor organic acids [Timpa & Burke (1986) and Gansedo & Luch (1986)].

The prime goal in this paper is to develop a simple and reproducible HPLC method for rapid separation and quantification of a group of some major organic acids. Also, this method is applied for the separation and determination of these organic acids in some medicinal leaves.

#### 2- EXPERIMENTAL

#### 2-1 Apparatus:

The ion chromatographic measurements were carried out using HIC-6A (Shimadzu, Japan) consisting of an LC- 10 AD liquid delivery pump, a DGU- 12 A Degasser, Rheodyne (77251) injection value with a 20 μl sample loop, CTO - 10 AVP column oven, CDD-6A conductivity detector and SCL 10 AVP system controller. The anion exchange column (Shim pack 1c A1, 4.6 mm IDX 100 mm), was purchased from Shimadzu. The column oven was maintained at 40°C. Data acquisition and treatment were accomplished using a Shimadzu data system C-R7A chromatopac.

# 2-1-1 Reagents:

All the organic acids used in this study were of analytical reagents grade. All chemicals were purchased from BDH chemicals Ltd poole England.

N-{[(ethylamino) thioxomethyl] hydrazinocarbonylmethyl} trimethyl ammonium chloride (ETHTC) was prepared in our laboratory **[Mostafa, unpublished results**]. Double distilled deionized water was filtered through 0.2  $\mu$ m Whatman membrane . A stock solution of 1000 mg l<sup>-1</sup> was prepared for each organic acid

All standard solutions, eluents, and reagents were prepared in double distilled deionized water and filtered through 0.2  $\mu m$  Whatman membrane filter.

#### 2-1-2 Sample preparation:

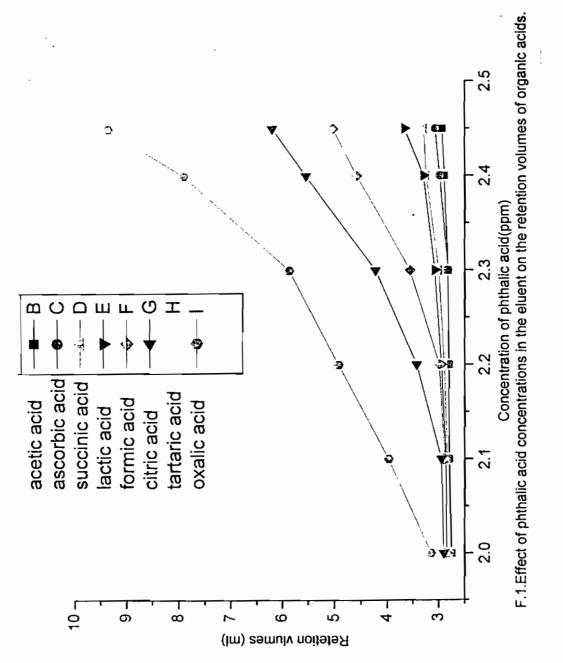
20 g of each one of the four medicinal samples under investigation namely, mentha longifolia (laniaceae) mint (mentha), labjatea (origznum mujorane) and gramineae (cymbopogon witerianus), was placed in a flask containing 70 ml double distilled deionized water. The mixture was heated at different temperatures (60, 70, 80, and 90 °C) for 5,10, 15, 20, 25 and 30 min. After cooling, the solution was filtered through a 0.2 μm Whatman membrane filter and then the filtered solution was transferred to 100ml flask and double distilled deionized water added to 100ml. This sample solution was injected into the ion chromatograph directly. Each sample was run ten times.

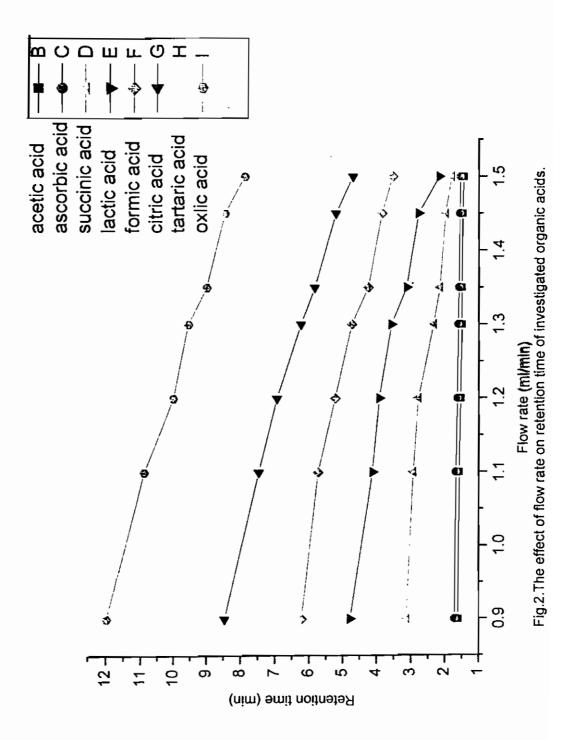
#### 2-1-3 The optimum conditions:

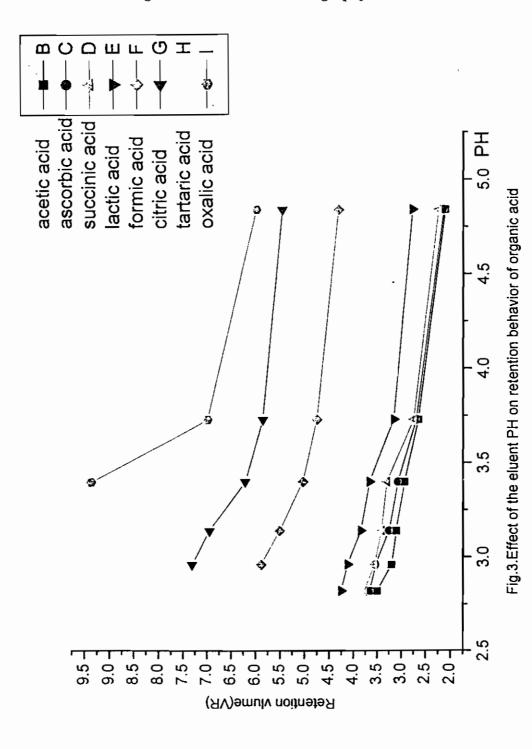
The optimum analytical condition have been established to separate eight organic acids simultaneously using Shim pack IC Al column, with 2.45 mM phthalic acid and 2.35 mM tris- (hydroxymethyl) aminomethane at pH=3.40; flow rate 1.5 ml/min and at 40°C. The data obtained was then compared with the eluent solution containing a mixture of 0.2 mM of N {[ethylamino) thioxomethyl)] hydrazioncarbonyl methyl} trimethyl ammonium chloride (ETHTC) in addition to the above mentioned eluent at pH = 3.63 and a flow rate 1.5 ml/min.

#### 3- RESULTS AND DISCUSSION

# 3-1 Effect of phthalic acid concentration.


The effect of phthalic acid concentration on the retention volume  $(V_R)$  of the organic acids was investigated. Fig.1 shows that the  $V_R$  values of organic acids increase with increasing the acid concentration. The data show that the background of eluent concentration increases with increasing the concentration of phthalic acid. The best concentration was found to be 2.45 mmol.


#### 3-2 The effect of flow rate on the retention time.


The effect of flow rate on the retention time was carried out at different flow rates ranging from 0.9 to 1.5 ml/min (table 1) and represented graphically in Fig.2. The data obtained indicates that the resolution time decreases by increasing the flow rate. Also, the results show that the most efficient separation of organic acids under investigation is obtained using a flow rate of 1.5 ml/min. On increasing the flow than 1.5 ml/min., we observed that the separation process becomes difficult and overlapped.

# 3-3 Effect of eluent pH on the retention behaviour of organic acids.

Different pH values in the 2.82-4.84 range (table 2) were used in order to achieve the optimum resolution time. Fig.4 shows that the retention volume of organic acids decreases with increasing the pH of the eluent strength for phthalic acid by promoting the degree of dissociation  $(pk_a = 2.95 \text{ and } pk_2 = 5.41 \text{ for phthalic acid})$ . The results indicate that an excellent separation for the species under investigation is obtained by using pH = 3.4. Also, the peaks overlap has been obtained on using pHabove 3.4 and the overlap reaches its maximum at pH=4.84 more than that observed at pH=3.73. The degree of resolution of organic acids is improved bv adding N-{[(ethylamino) thioxomethyll hydrazinocabonylmethyl} trimethylammonium chloride (ETHTC). Different concentrations of ETHTC (0.2 mmol- 2.0 mmol) were used. The results indicate that the efficiency of separation process is increased with decreasing the concentration of ETHTC.





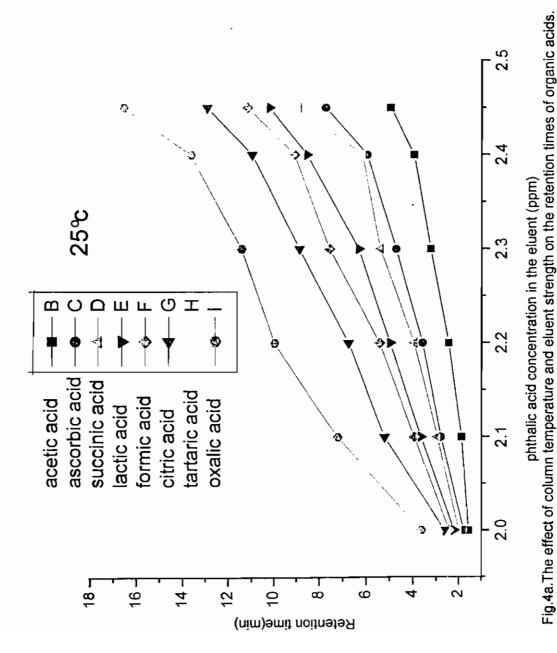


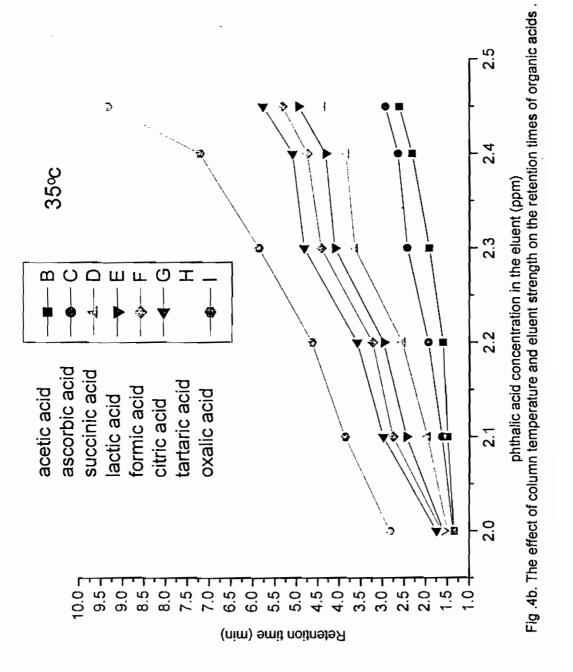
| <b>Table</b> (1): | The  | effect  | of   | flow  | rate  | on | retention | time | (min | R) | of |
|-------------------|------|---------|------|-------|-------|----|-----------|------|------|----|----|
|                   | inve | stigate | d or | ganic | acids | S. |           |      |      |    |    |

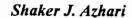
| Flow |        | Ascorbic | Succinic | Lactic | Formic | Citric | Tartaric | Oxalic |
|------|--------|----------|----------|--------|--------|--------|----------|--------|
| rate | Acetic | acid     | acid     | acid   | acid   | acid   | acid     | acid   |
| ml/  | acid   |          |          |        |        |        |          |        |
| min  |        |          |          |        |        |        |          |        |
| 0.9  | 1.61   | 1.713    | 3.125    | 4.775  | 6.219  | 8.453  | 10.856   | 11.979 |
| 1.1  | 1.578  | 1.672    | 2.937    | 4.122  | 5.738  | 7.455  | 9.113    | 10.885 |
| 1.2  | 1.535  | 1.63     | 2.789    | 3.925  | 5.236  | 6.928  | 8.312    | 9.99   |
| 1.3  | 1.5    | 1.61     | 2.335    | 3.567  | 4.736  | 6.236  | 7.537    | 9.535  |
| 1.35 | 1.498  | 1.583    | 2.153    | 3.125  | 4.253  | 5.839  | 6.932    | 8.986  |
| 1.45 | 1.479  | 1.563    | 1.983    | 2.785  | 3.856  | 5.231  | 6.395    | 8.452  |
| 1.5  | 1.438  | 1.537    | 1.798    | 2.172  | 3.54   | 4.713  | 5.951    | 7.87   |

Table (2): The effect of the eluent pH on retention behavior  $(V_R)$  of investigated organic acids.

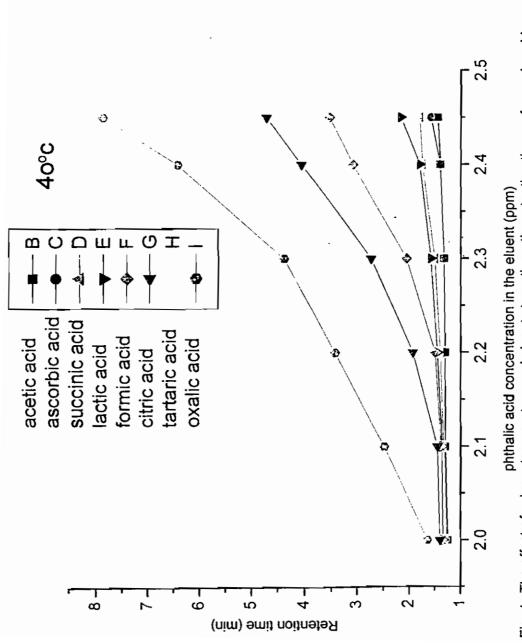
| pН   | Acetic acid | Ascorbic acid | Succinic<br>acid | Lactic acid | Formic acid | Citric<br>acid | Tartaric<br>acid | Oxalic<br>acid |
|------|-------------|---------------|------------------|-------------|-------------|----------------|------------------|----------------|
| 2.82 | 3.5         | 3.65          | 3.78             | 4.26        |             |                |                  |                |
| 2.96 | 3.2         | 3.54          | 3.56             | 4.13        | 5.89        | 7.312          |                  |                |
| 3.14 | 3.1         | 3.25          | 3.41             | 3.85        | 5.52        | 6.952          | 8.346            |                |
| 3.4  | 2.938       | 3.073         | 3.298            | 3.672       | 5.04        | 6.213          | 7.451            | 9.37           |
| 3.73 | 2.65        | 2.69          | 2.75             | 3.16        | 4.76        | 5.86           | 6.12             | 7              |
| 4.84 | 2.11        | 2.14          | 2.24             | 2.78        | 4.33        | 5.47           | 5.7              | 6              |


# 3-4 Effect of column temperature and eluent strength on the retention time.


The effects of column temperature and eluent strength on the retention time are shown in Fig.4 and represented in Table 3. The retention times of organic acids increase with increasing the eluent concentration form 2.0 upto 2.45mM and with decreasing the temperature.


Table .3. The Relation between concentration of phthalic acid and TR at different temperatures.

1


|                   |       |        |          |          | TR     | 24     |        |          |        |
|-------------------|-------|--------|----------|----------|--------|--------|--------|----------|--------|
| ပ                 | (m M) | Acetic | Ascorbic | Succinic | Lactic | Formic | Citric | Tartaric | Oxalic |
|                   |       | acid   | acid     | acid     | acid   | acid   | acid   | acid     | acid   |
|                   | 2     | 1.55   | 1.76     | 1.99     | 2.2    | 2.42   | 2.65   | 2.88     | 3.65   |
|                   | 2.1   | 1.87   | 2.79     | 3.23     | 3.67   | 3.96   | 5.22   | 8.9      | 7.23   |
| 250               | 2.2   | 2.45   | 3.6      | 3.96     | 4.99   | 5.44   | 6.77   | 8.9      | 86.6   |
| 2                 | 2.3   | 3.26   | 4.75     | 5.42     | 6.34   | 7.59   | 88.8   | 10.77    | 11.44  |
|                   | 2.4   | 3.98   | 5.99     | 9.9      | 8.55   | 9.61   | 10.98  | 12.64    | 13.66  |
|                   | 2.45  | 4.998  | 7.76     | 8.93     | 10.22  | 11.19  | 12.93  | 14.54    | 16.59  |
|                   | 2     | 1.35   | 1.37     | 1.49     | 1.59   | 1.63   | 1.75   | 1.98     | 2.83   |
|                   | 2.1   | 1.495  | 1.62     | 1.96     | 2.45   | 2.76   | 2.99   | 3,32     | 3.87   |
| 350               | 2.2   | 1.6    | 1.94     | 2.55     | 2.98   | 3.24   | 3.59   | 3.89     | 4.65   |
| )                 | 2.3   | 1.92   | 2.43     | 3.65     | 4.11   | 4.43   | 4.83   | 5.201    | 2.87   |
|                   | 2.4   | 2.32   | 2.65     | 3.85     | 4.33   | 4.76   | 5.1    | 5.5      | 7.22   |
|                   | 2.45  | 2.62   | 2.94     | 4.41     | 4.97   | 5.34   | 5.77   | 6.27     | 9.35   |
|                   | 2     | 1.25   | 1.27     | 1.29     | 1.34   | 1.36   | 1.4    | 1.62     | 1.65   |
|                   | 2.1   | 1.295  | 1.3      | 1.33     | 1.36   | 1.38   | 1.45   | 1.8      | 2.48   |
| J <sub>0</sub> U7 | 2.2   | 1.3    | 1.31     | 1.39     | 1.45   | 1.49   | 1.93   | 2.39     | 3.43   |
| 2                 | 2.3   | 1.32   | 1.32     | 1.5      | 1.58   | 2.06   | 2.73   | 3.17     | 4.38   |
|                   | 2.4   | 1.395  | 1.395    | 1.75     | 1.8    | 3.09   | 4.06   | 4.48     | 6.42   |
|                   | 2.45  | 1.438  | 1.573    | 1.798    | 2.172  | 3.54   | 4.713  | 5.951    | 7.87   |











phthalic acid concentration in the eluent (ppm)
Fig. 4c. The effect of column temperature and eluent strength on the retention times of organic acids

Also, the retention times for the six eluent strength decrease when the column temperatures increase from 25 to 40°C. The results on (Fig.4) show that the resolution at 40°C and concentration 2.45 mM, gives the shortest retention time. On comparing our results with Qiu's method [Qiu & Jin (2002)], we observed that the process of selection of temperature and eluent strength is very easy. In addition, our results of the optimum conditions enable us to reduce the resolution time for the eight organic acids from 16.59 to 7.87 min.

# 3.5 Effect of ETHTC on tR and sensitivity.

The effect of addition of ETHTC to the mobile phase on the tR shows that the retention time is slightly decreased on adding ETHTC. The detection limits (S/N = 3) for various organic acids are given in Table 4. The results show that the detection limits obtained by using a 2.45 mM phthalic acid 2.35 mM N-hydroxy methylaminomethan and 0.2 mM of ETHTC at pH = 3.63 are efficiently lowered compared to those those obtained in the absence of ETHTC. Also, the data shows that the conductivity of the mobile phase containing ETHTC is 125.7  $\mu$ /cm while the conductivity reaches 107.8  $\mu$ /cm in the absence of ETHTC. Such increase in conductivity may be due to the lowering in the background conductivity [Ding et al., (1997)] leads to the increase in detection sensitivity. On the other hand, our results show that the increase of background conductivity will led to increase. In detection sensitivity. This is mainly attributed to the presence and contribution of ETHTC in the composition of the mobile phase. Table 4 shows the calibration graphs of the peak areas for all analytes. This table also indicates the linearity of the peak area with regression coefficient  $(r^2)$  of (0.9990 - 0.9997).

# 3.6 Application:

The efficiency of extraction of each analyst differs by varying temperature (60, 70, 80 and 90 °C) for the different time values (5,10 15,20, 25 and 30min) with relative standard deviation (R.S.D.) below 3%. Table (5) shows that the most suitable temperature and time for extraction of the organic acids under investigation are 90 °C and 30 min, respectively. Also, the results show that sample numbers 1,3 and 4 contain eight organic acids. Meanwhile, sample (2) contains only six organic acids with the absence of both formic and tartaric acids. Moreover, the results indicate that sample (3) is stable for 3 days, sample

(2) for 2 days while sample 1,4 are stable for only one day if kept in refrigerator. The contents of organic acids start to decompose after the stability period mentioned above. All samples show the obscure of organic acid contents after six days except sample (1) which is totally decomposed after five days. Moreover, the results indicate that both ascorbic and lactic acids are unstable in comparison to the other six acids and decomposed completely after four days for all sample. All the four samples are precipitated after 7 days.

The chromatograms of the standard mixture of organic acids and samples are shown in figs. 1 and 2, respectively.

Table . 4 . Detection limit (S/N=3), linear range of organic acids and regression coefficient.

| Compound      | Detection li         | mit ( mg / L )         | Linearity   | Regression<br>Coefficient ( r <sup>2</sup> ) |
|---------------|----------------------|------------------------|-------------|----------------------------------------------|
| Compound      | Phthalic acid+(tris) | Phthalic acid+(tris+L) | Range(mg/L) | Coefficient (1)                              |
| Acetic acid   | 0.20                 | 0.095                  | 0.5-500     | 0.9991                                       |
| Ascorbic acid | 0.14                 | 0.017                  | 0.5-3000    | 0.9998                                       |
| Succinic acid | 0.32                 | 0.07                   | 0.5-5000    | 0.9991                                       |
| Lactic acid   | 0.23                 | 0.075                  | 0.5-1500    | 0.9998                                       |
| Formic acid   | 0.21                 | 0.067                  | 0.5-1200    | 0.9993                                       |
| Citric acid   | 0.63                 | 0.065                  | 1-2500      | 0.9991                                       |
| Tartaric acid | 0.41                 | 0.02                   | 0.5-2000    | 0.9993                                       |
| Oxalic acid   | 0.10                 | 0.025                  | 0.5-3000    | 0.9991                                       |

Tris:(hydroxymethyl) aminomethane

L : ETHTC

The concentration of organic acids in the medicinal plants at different temperatures. Table.

| lable                                                                               | Tern          | <u> </u> | •    | _ [  | 2    |       | -    | 6    | 0    | -    | ,    | 3    | 2    | -    | _    | .    | _    | -    |      | . 70 |      | 07   | 7,   | -    |      | 3    | Samples:                   |
|-------------------------------------------------------------------------------------|---------------|----------|------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------------------------|
| O                                                                                   | Mean<br>RSD   |          | a    | Д    | Ħ    | q     | ч    | q    | 83   | q    | æ    | q    | ъ.   | q    | ដ    | q    | =    | ٥    | ٦.   | a    | ۳.   | q    | ĸ    | q    | æ    | ۵    |                            |
| au -                                                                                |               | ~        | 53   | 1.48 | 95   | 1.44  | 127  | 1.40 | 145  | 1.38 | 175  | 1.29 | 183  | 1.25 | 195  | 1.22 | 213  | 1.19 | 234  | 1.16 | 257  | 1.13 | 296  | 1.13 | 315  | 1.10 | I (mentha                  |
| conce                                                                               | Aceti         | 2        | 813  | 2.55 | 106  | 2.51  | 947  | 2.48 | 1004 | 2.43 | 1062 | 2.39 | 1103 | 2.36 | 1171 | 2.29 | 1207 | 2.24 | 1258 | 2.21 | 1305 | 2.19 | 1379 | 2.15 | 1423 | 2.11 | ha vridis)                 |
| ntrati                                                                              | Acetic acid   | 3        | 1085 | 2.71 | 1113 | 2.49  | 1193 | 2.37 | 1278 | 2.28 | 1321 | 2.21 | 1378 | 2.17 | 1427 | 1.18 | 1465 | 1.10 | 1513 | 0.98 | 1546 | 0.95 | 1575 | 0.92 | 1624 | 06.0 | 2 (                        |
| on of                                                                               |               | 4        | 49   | 1.57 | 29   | 1.55  | 86   | 1.53 | 113  | 1.49 | 145  | 1.47 | 157  | 1.45 | 178  | 1.42 | 961  | 1.39 | 214  | 1.36 | 235  | 1.33 | 268  | 1.28 | 294  | 1.86 | 2 ( mentha longifolia      |
| orgal                                                                               | `<br>         | -        | 25.2 | 1.72 | 28.3 | 1.70  | 38.8 | 1.53 | 43.2 | 1.49 | 49.7 | 1.36 | 54.1 | 1.17 | 69.2 | 0.94 | 74.6 | 0.86 | 81.2 | 0.84 | 87.3 | 0.78 | 91.5 | 69.0 | 95   | 0.63 | longifo                    |
| nıc ac                                                                              | Ascor         | 2        | 303  | 0.94 | 345  | 0.91  | 401  | 0.88 | 434  | 98.0 | 470  | 0.83 | 502  | 84.0 | 551  | 0.74 | 612  | 99.0 | 654  | 0.63 | 717  | 0.57 | 774  | 0.52 | 812  | 0.46 | lia )                      |
| nds in                                                                              | Ascorbic acid | т.       | 59   | 1.68 | 37   | 1.62  | 44   | 1.48 | 53   | 1.43 | 62   | 1.33 | 7.1  | 1.12 | 82   | 88.0 | 66   | 0.81 | 112  | 0.77 | 131  | 0.71 | 152  | 0.65 | 166  | 0.56 | 3 ( 0                      |
| the n                                                                               | q             | 4        | 35   | 1.81 | 41   | 1.74  | 67   | 1.66 | 84   | 1.62 | 117  | 1.56 | 148  | 1.47 | 197  | 1.34 | 241  | 1.27 | 263  | 1.21 | 299  | 1.17 | 320  | 1.12 | 334  | 96.0 | 3 ( origanum majorana      |
| nedic                                                                               |               | -        | 230  | 1.45 | 360  | 1.42  | 430  | 1.42 | 502  | 1.40 | 551  | 1.39 | 591  | 1.37 | 611  | 1.30 | 617  | 1.30 | 623  | 1.31 | 631  | 1.27 | 637  | 1.27 | 642  | 1.23 | пајога                     |
| ınal p                                                                              | Succinic      | 2        | 1    |      | 6    | 2.33  | 11   | 2.31 | 18   | 2.29 | 27   | 2.27 | 38   | 2.22 | 47   | 2.17 | 54   | 2.11 | 62   | 1.19 | 74   | 1.14 | 83   | 1.11 | 96   | 0.98 | ina )                      |
| e concentration of organic acids in the medicinal plants at different temperatures. | nic acid      | 3        | 1    | i    | 1    | :     | i    | ;    | i    | 1    | ∞    | 2.53 | 18   | 2.33 | 23   | 2.26 | 34   | 2.25 | 43   | 2.22 | 52   | 1.88 | 61   | 1.76 | 74   | 1.47 | 4 ( c)                     |
| at dif                                                                              | р             | 4        | ;    | i    | :    | ;     | 1    | 1    | 1    | 1    | 1    |      | 6    | 2.40 | 13   | 2.13 | 22   | 1.89 | 31   | 1.86 | 47   | 1.72 | 54   | 1.67 | 65   | 1.59 | /mbopo                     |
| lerent                                                                              |               | -        | 202  | 1.70 | 209  | 69' 1 | 215  | 1.54 | 221  | 1.23 | 225  | 1.10 | 231  | 66.0 | 248  | 0.83 | 257  | 0.79 | 271  | 0.75 | 285  | 0.72 | 302  | 0.75 | 343  | 0.72 | gon wir                    |
| temi                                                                                | Lactic        | 2        | 223  | 1.95 | 234  | 1.76  | 256  | 1.27 | 271  | 1.37 | 294  | 1.48 | 323  | 1,30 | 341  | 1.32 | 362  | 1.29 | 988  | 1.21 | 401  | 1.12 | 424  | 1.14 | 451  | 1.15 | 4 ( cymbopogon winterianus |
| eratu                                                                               | c acid        | 3        | 817  | 1.64 | 874  | 1.63  | 921  | 1.63 | 933  | 1.62 | 963  | 1.61 | 984  | 1.59 | 1019 | 1.58 | 1049 | 1.58 | 1097 | 1.56 | 1114 | 1.41 | 1165 | 1.37 | 1188 | 1.22 | ° S                        |
| res.                                                                                |               | 4        | 1020 | 1.82 | 1034 | 1.73  | 1075 | 1.68 | 1113 | 1.58 | 1145 | 1.52 | 1167 | 1.47 | 1189 | 1.38 | 1234 | 1.33 | 1256 | 1.32 | 1288 | 1.20 | 1321 | 1.12 | 1368 | 0.97 |                            |

| Habit Acetic acid      | acid |      |    | <b> </b> | Ascorbic acid | c acic |      |      | uccin | Succinic acid | l 1  |      | Lactic | Lactic acid |      |
|------------------------|------|------|----|----------|---------------|--------|------|------|-------|---------------|------|------|--------|-------------|------|
| 2 3 4<br>1462 1687 314 |      | 4 4  | -  | - 6      | 2 867         | 283    | 358  | 1    | 115   | 3             | 4    | 370  | 482    | 3           | 1422 |
| ╁                      | ₩    | 1.12 | —- | 0.52     | 0.41          | 0.47   | 0.85 | 96.0 | 1.13  | 1.36          | 1.41 | 69.0 | 0.73   | 1.1         | 98.0 |
| 1517 1722 345          |      | 345  |    | 114      | 206           | 210    | 379  | 651  | 168   | 65            | 83   | 412  | 509    | 1241        | 1476 |
| 1.78 0.73 0.99         |      | 0.99 |    | 0.48     | 0.37          | 0.42   | 0.79 | 96.0 | 1.04  | 1.27          | 1.30 | 0.64 | 98.0   | 0.94        | 0.84 |
| 1582 1785 377          |      | 377  |    | 125      | 972           | 234    | 403  | 658  | 194   | 121           | 103  | 445  | 541    | 1261        | 1512 |
| 1.66 0.68 0.92         | 0.92 | _    | _  | 0.39     | 0.32          | 0.36   | 0.64 | 0.87 | 0.84  | 1.20          | 1.26 | 0.73 | 0.72   | 0.82        | 0.80 |
| 1613 1817 392          | 392  |      |    | 139      | 1050          | 253    | 425  | 999  | 202   | 149           | 125  | 489  | 572    | 1279        | 1552 |
| 1.53 0.64 0.86 0       | 98.0 |      | 0  | 0.34     | 0.28          | 0.30   | 0.52 | 0.87 | 0.81  | 1.10          | 1.18 | 0.77 | 0.49   | 0.72        | 0.77 |
| 1668 1864 406 1        | 406  |      | -  | 147      | 1121          | 277    | 465  | 671  | 223   | 189           | 151  | 515  | 602    | 1294        | 1577 |
| 1.46 0.61 0.81 0.      | 0.81 |      | o  | 0.27     | 0.23          | 0.23   | 0.47 | 99.0 | 0.71  | 96.0          | 1.12 | 0.62 | 0.50   | 0.64        | 0.63 |
| 1713 1913 427 1.       | 427  |      | -  | 152      | 1188          | 304    | 493  | 9/9  | 254   | 221           | 186  | 547  | 622    | 1321        | 1634 |
| 1.37 0.60 0.73 0.      | 0.73 |      | 0. | 0.23     | 0.19          | 0.21   | 0.42 | 0.61 | 99.0  | 0.85          | 0.88 | 09.0 | 0.42   | 09'0        | 0.50 |
| 1776 1954 443 10       | 443  |      | 1  | 163      | 1232          | 344    | 541  | 689  | 276   | 248           | 199  | 573  | 634    | 1356        | 1662 |
| 1.17 0.56 0.64 0.      | 0.64 |      | 0  | 0.17     | 0.14          | 0.15   | 0.36 | 0.56 | 0.52  | 08.0          | 0.83 | 0.75 | 0.36   | 0.44        | 0.42 |
| 1811 1994 451 1        | 451  |      | 1  | 169      | 1299          | 365    | 293  | 697  | 295   | 265           | 224  | 584  | 199    | 1385        | 1723 |
| 1.1 0.51 0.57          | 0.57 | '    | 0  | 0.15     | 0.13          | 0.13   | 0.30 | 0.55 | 0.41  | 0.72          | 0.76 | 0.70 | 0.32   | 0.40        | 0.37 |
| 5 1884 2013 460        | 460  |      | -  | 173      | 1366          | 384    | 165  | 703  | 322   | 284           | 246  | 595  | 685    | 1423        | 1758 |
| 0.71 0.47 0.50         | 0.50 |      | 9  | 0.14     | 0.11          | 0.12   | 0.21 | 0.43 | 0.32  | 0.72          | 0.73 | 0.72 | 0.30   | 9.35        | 0.35 |
| 1974 2095 472          | 472  |      | _  | 181      | 1423          | 403    | 219  | 711  | 342   | 321           | 266  | 610  | 721    | 1453        | 1817 |
| 9 0.52 0.42 0.46 0     | 0.46 |      | 0  | 0.12     | 0.11          | 0.11   | 91.0 | 0.33 | 0.24  | 0.43          | 0.64 | 0.73 | 0.31   | 0.32        | 0.32 |
| 1986 2133 478          | 478  |      |    | 184      | 1479          | 435    | 647  | 716  | 365   | 351           | 287  | 620  | 754    | 1496        | 1846 |
| 5 0.32 0.37 0.41       | 0.41 |      |    | 0.11     | 01.0          | 0.10   | 0.13 | 0.30 | 0.24  | 0.25          | 0.43 | 0.70 | 0.31   | 0.30        | 0.28 |
| 4 1997 2185 482        |      | 482  | 1  | 190      | 1520          | 450    | 869  | 720  | 385   | 362           | 328  | 929  | 795    | 1513        | 1986 |
| 0.20 0.24 0.31 0.37    | 0.37 | Н    | _  | 0 11     | 0.10          | 0.10   | 0.12 | 0.16 | 0.19  | 0.21          | 0.32 | 0.73 | 0.32   | 0.29        | 0.27 |

| Tab       | le ( | š ) (    | Table ( 5 ) Contd: |        |             |      |      |        |      |      |      |               |        |            |      |        |      |      |
|-----------|------|----------|--------------------|--------|-------------|------|------|--------|------|------|------|---------------|--------|------------|------|--------|------|------|
| Тепа<br>С | Tien | RSD      |                    | Formi  | Formic acid |      |      | Citric | acid |      |      | Tartaric acid | c acid |            |      | Oxalic | acid |      |
|           |      |          |                    | 2      | 3           | 4    | _    | 7      |      | 4    | -    | 2             | 5      | 4          | -    | 2      | 3    | 4    |
|           | ¥.   | æ        | 57                 | ND     | 131         | 34   | 841  | 989    | 721  | 892  | 86   | ND            | 205    | 234        | 112  | 73     | 98   | 92   |
|           | ,    | ے        | 1.69               | S.     | 1.54        | 1.92 | 2.28 | 2.41   | 2.32 | 2.23 | 2.26 | ND            | 2,53   | 2.85       | 1.31 | 16.1   | 1.75 | 1.66 |
|           | 9    | =        | <u></u>            | Q.     | 153         | 52   | 910  | 750    | 874  | 899  | 143  | QN            | 569    | 289        | 176  | 98     | 104  | 136  |
|           | 2    | ۵        | 1.67               | S      | 1.55        | 1.89 | 2.20 | 2.29   | 2.25 | 2.20 | 2.22 | 見             | 2.47   | 2.76       | 1.28 | 1.88   | 1.68 | 1.62 |
| _         | 4    | =        | 131                | N<br>N | 167         | 87   | 965  | 893    | 924  | 945  | 185  | QN            | 322    | 345        | 201  | 102    | 138  | 158  |
| 60        | :    | ۵        | 1.65               | Q      | 1.53        | 1.79 | 2.11 | 2.21   | 2.22 | 1.79 | 2.18 | £             | 2.41   | 2.70       | 1.23 | 1.84   | 1.56 | 1.51 |
| o<br>     | 5    | -        | 152                | QN     | 195         | 108  | 1025 | 955    | 886  | 966  | 216  | £             | 366    | 396        | 232  | 144    | 182  | 212  |
|           | 2    | ۵        | 1.63               | QN     | 1.51        | 1.77 | 1.97 | 2.11   | 2.12 | 1.74 | 2.13 | Ð             | 2.35   | 2.66       | 1.20 | 1.80   | 1.48 | 1.45 |
|           | Υ.   | ٦.       | 182                | ND     | 222         | 136  | 1149 | 1101   | 1107 | 1128 | 265  | £             | 419    | 442        | 295  | 175    | 252  | 267  |
|           | 3    | ے        | 1.63               | ND     | 1.47        | 1.76 | 1.67 | 1.87   | 2.05 | 1.67 | 2.06 | Ð             | 2.30   | 2.61       | 1.19 | 1.67   | 1.42 | 1.37 |
|           | ۶    | es       | 189                | S      | 244         | 157  | 1201 | 1134   | 1154 | 1166 | 294  | £             | 456    | 485        | 341  | 204    | 288  | 311  |
|           |      | ۵        | 1.62               | Ð.     | 1.44        | 1.75 | 1.54 | 1.85   | 1.74 | 1.60 | 1.92 | QN            | 2.23   | 2.57       | 1.11 | 1.56   | 1.36 | 1,21 |
|           | v:   | <b>e</b> | 203                | S<br>S | 287         | 183  | 1230 | 1202   | 1209 | 1226 | 322  | ND            | \$08   | 543        | 368  | 245    | 322  | 341  |
|           |      | ۵        | 1.58               | Q.     | 1.45        | 1.70 | 1.48 | 1.73   | 1.64 | 1.52 | 1.86 | ND            | 2.17   | 2.33       | 68'0 | 1.32   | 1.27 | 0.99 |
|           | 01   | =        | 215                | S      | 314         | 198  | 1302 | 1275   | 1289 | 1295 | 362  | QN            | 541    | 578        | 401  | 275    | 375  | 389  |
|           | :    | ۵        | 1.55               | Ð      | 1.43        | 1.66 | 1.45 | 1.70   | 1.53 | 1.45 | 1.83 | NĎ            | 2.13   | 2.30       | 98.0 | 1,21   | 1.16 | 0.84 |
|           | 7    | æ        | 237                | ΩN     | 342         | 204  | 1355 | 1312   | 1343 | 1356 | 401  | ND            | 581    | 989        | 435  | 303    | 412  | 422  |
| 70        | 2    | ۵        | 1.53               | S      | 1.42        | 1.63 | 1.41 | 1.66   | 1.48 | 1.37 | 1.82 | QN            | 2.11   | 2.29       | 0.76 | 1.13   | 1.08 | 0.79 |
| )         | 3.0  | =        | 258                | QN     | 356         | 232  | 1417 | 1371   | 1401 | 1415 | 434  | QN            | 632    | <b>L89</b> | 488  | 341    | 443  | 455  |
|           |      | ٦        | 1.52               | N      | 1.46        | 1.60 | 1.36 | 1.42   | 1.42 | 1.31 | 1.80 | QN            | 1.93   | 2.25       | 0.71 | 0.88   | 96'0 | 0.77 |
|           | 35   | =        | 299                | g      | 361         | 253  | 1471 | 1403   | 1438 | 1457 | 486  | ND            | 664    | 721        | 517  | 385    | 471  | 482  |
| . '       | }    | Q        | 1.51               | ND     | 1.40        | 1.58 | 1.32 | 1.38   | 1.45 | 1.26 | 1.79 | QN            | 1.90   | 2.20       | 0.68 | 0.78   | 0.77 | 0.77 |
|           | 30   |          | 318                | ΩN     | 379         | 264  | 1575 | 1535   | 1564 | 1570 | 525  | ND            | 289    | 592        | 561  | 413    | 818  | 230  |
|           | 3    | ۵        | 1.50               | QN     | 1.39        | 1.58 | 1.30 | 1.32   | 1.34 | 1.21 | 1.77 | ND            | 1.84   | 2.13       | 0.61 | 0.74   | 0.62 | 0.75 |

| Formic acid                    | P             |      | Citric acid | ٦         | _    | Tartar   | Tartaric acid |      |      | Oxalic | c acid |      |
|--------------------------------|---------------|------|-------------|-----------|------|----------|---------------|------|------|--------|--------|------|
| 1 2 3 4 1                      | _             | 1 '  | 2 3         | 4         | -    | 7        | 3             | 4    | -    | 2      | 3      | 4    |
| 347 ND 403 295 1635            | 635           |      | 1570 1618   | 8 1626    | 584  | QN       | 738           | 812  | 604  | 434    | 574    | \$86 |
| 1.49 ND 1.37 1.54 1.28         | .28           | _    | 1.26 1.21   | 1 1.10    | 1.72 | ND       | 1.78          | 1.96 | 0.59 | 0.70   | 0.59   | 89.0 |
| 404 ND 421 331 1745            | 745           |      | 1619 1625   | 1666      | 613  | ND       | 187           | 849  | 665  | 499    | 602    | 679  |
| 1.48 ND 1.35 1.51 1.20         | ×.            |      | 1.25 1.12   | 2 0.89    | 1.70 | S<br>S   | 1.72          | 1.84 | 09.0 | 0.62   | 0.55   | 0.53 |
| 438 ND 435 345 1811            | 8             |      | 1651 1717   | 7 1785    | 657  | ND       | 821           | 883  | 726  | 544    | 643    | 629  |
| 1.45   ND   1.35   1.47   1.21 | 21            | _    | 1.20 0.92   | 2 0.86    | 1.68 | ND       | 1.67          | 1.80 | 0.53 | 0.54   | 0.53   | 0.51 |
| 443 ND 462 364 1837            | 837           | _    | 1682 1742   | 1804      | 723  | SN<br>ON | 858           | 935  | 176  | 617    | 899    | 812  |
| 1.43 ND 1.32 1.47 1.27         | 27            |      | 1.17 0.83   | 3 0.77    | 1.62 | Q        | 1.62          | 1.74 | 0.49 | 0.50   | 0.51   | 0.50 |
| 451 ND 491 388 1873            | 873           |      | 1709 1777   | 7 1832    | 774  | Ð        | 911           | 982  | 811  | 899    | 705    | 739  |
| 1.42   ND   1.29   1.44   1.23 | .23           |      | 1.17 0.74   | 4 0.65    | 1.60 | N<br>Q   | 1.58          | 1.63 | 0.40 | 0.43   | 0.47   | 0.48 |
| 457 ND 523 409 1897            | 897           |      | 1745 1811   | 1 1856    | 809  | QN       | 937           | 1033 | 988  | 709    | 748    | 168  |
| 1.40 ND 1.27 1.40 1.15         | 2             |      | 1.15 0.63   | 3 0.54    | 1.59 | ND       | 1.54          | 1.57 | 0.40 | 0.38   | 0.44   | 0.41 |
| 470 ND 572 428 1913            | 913           |      | 1771 1878   | 1887      | 843  | ND       | 886           | 1068 | 917  | 181    | 179    | 818  |
| 1.39 ND 1.25 1.42 1.11         | =             | _    | 0.86 0.52   | 2 0.43    | 1.53 | QN       | 1.49          | 1.51 | 0.32 | 0.31   | 0.37   | 0.36 |
| 475 ND 583 445 1955            | 955           |      | 1802 1903   | 1928      | 895  | ND       | 1025          | 1092 | 984  | 802    | 816    | 841  |
| 1.38 ND   1.22   1.40   0.74   | 7.            | _    | 0.71 0.49   | 9 0.36    | 1.50 | QN.      | 1.48          | 1.49 | 0.26 | 0.27   | 0.30   | 0.29 |
| 481 ND 597 463 1985            | 8             | 5    | 1843 1932   | 12 1943   | 923  | QN       | 9601          | 1134 | 1003 | 855    | 935    | 965  |
| 1.27 ND 1.20 1.37 0.63         | ا≍ا           | 53   | 0.53 0.31   | 1 0.27    | 1.49 | Ą        | 1.47          | 1.48 | 0.23 | 0.26   | 0.28   | 0.27 |
| 493 ND 609 479 2019            | 0             | 6    | 1879 1969   | 69   1983 | 846  | ΩN       | 1113          | 1152 | 1074 | 921    | 586    | 1013 |
| 1.25 ND 1.17 1.35 0.32         | <u>  ~   </u> |      | 0.32 0.27   | 7 0.19    | 1.47 | Ą        | 1.46          | 1.47 | 0.19 | 0.21   | 0.23   | 0.20 |
| 498 ND 623 486 2120            | 15            | 0    | 1923 2109   | 1112 60   | 1042 | £        | 1198          | 1218 | 1185 | 954    | 1003   | 1058 |
| 1.20 ND 1.16 1.32 0.18         | =:            | - 00 | 0.12 0.13   | 3 0.11    | 1.44 | Ą        | 1.45          | 1.43 | 0.13 | 0.20   | 0.17   | 0.15 |
| 504 ND 641 493 2336            | , in          | 36   | 1974 2256   | 56 2288   | 1130 | 8        | 1244          | 1258 | 1235 | 973    | 1025   | 9601 |
| .19 ND 1.15 1.30 0.10          | -             | -    | 0.0         |           |      |          |               |      |      |        |        |      |

Table . 6 . The stability of medicinal samples at 90 °C and 30 min.

| p             | 4         | 3 1986 | 9 0.27 | 0 1023 | 9 0.33 | 9 735 | 9 0.36 | 1 73 | 2 0.39 | QN   | ON C | QN  | ON C     | ON C   | QN       |
|---------------|-----------|--------|--------|--------|--------|-------|--------|------|--------|------|------|-----|----------|--------|----------|
| Lactic acid   | ~         | 1513   | 0.29   | 1510   | 0.29   | 1499  | 0.29   | 254  | 0.32   | ND   | ND   | QN  | ND       | QN     | QN       |
| Lacti         | 2         | 795    | 0.32   | 167    | 0.32   | 327   | 0.37   | 133  | 0.42   | QN   | CN   | QN  | QN       | QN     | QN       |
|               | _         | 929    | 0.73   | 349    | 0.75   | 126   | 0.81   | 33   | 0.48   | ΩN   | QN   | ND  | QN       | R      | QN       |
|               | 4         | 328    | 0.32   | 165    | 0.37   | 68    | 0.41   | 36   | 0.41   | 21   | 0.44 | 6   | 0.47     | ND     | S        |
| ic acid       | ~         | 362    | 0.21   | 360    | 0.21   | 358   | 0.21   | 147  | 0.24   | 63   | 0.25 | 19  | 0.31     | N<br>Q | S        |
| Succinic acid | 2         | 385    | 0.19   | 382    | 0.19   | 145   | 0.23   | 74   | 0.27   | 28   | 0.32 | 11  | 0.35     | Ð      | SE<br>SE |
| 01            | -         | 720    | 0.16   | 416    | 0.18   | 224   | 0.24   | 52   | 0.31   | 11   | 0.35 | Ð   | £        | Ą      | S        |
| -             | 4         | 869    | 0.12   | 425    | 0.17   | 265   | 0.21   | 114  | 0.26   | Ð    | Ð    | ND  | S        | S<br>S | ND ND    |
| Ascorbic acid | 3         | 450    | 0.10   | 448    | 0.10   | 445   | 0.10   | 126  | 0.16   | S    | QN   | QN. | S        | ð      | ΩN       |
| scorb         | 2         | 1520   | 0.10   | 1518   | 0.10   | 634   | 0.17   | 891  | 0.23   | Ð    | Ð    | Ð   | £        | S      | Ð        |
| <b>A</b>      | -         | 190    | 0.11   | 113    | 0.15   | 7.5   | 0.18   | 50   | 0.26   | £    | Ð    | QN  | £        | Ω      | Ð        |
|               | 4         | 482    | 0.37   | 295    | 0.40   | 216   | 0.42   | 124  | 0.45   | 42   | 0.47 | 12  | 0.52     | ΩN     | Q.       |
| acid          | 6         | 2185   | 0.31   | 2182   | 0.31   | 2180  | 0.31   | 1345 | 0.35   | 821  | 0.37 | 319 | 0.40     | ΩN     | S        |
| Acetic acid   | <b>CI</b> | 1997   | 0.24   | 1993   | 0.24   | 1128  | 0.27   | 817  | 0.29   | \$18 | 0.29 | 103 | 0.30     | ΩN     | ΩN       |
|               | _         | 484    | 0.20   | 305    | 0.22   | 245   | 0.24   | 155  | 0.24   | 32   | 0.25 | NO  | QN       | ΩN     | ΩN       |
| Mear<br>RSI   |           | £      | P      | a      | ď      | e     | q      | a    | q      | æ    | q    | в   | q        | r.     | ٩        |
| Time          | (F)       | ,      | †<br>† | 0,     | ç      | í     | 7/     | 2    | 96     | 130  | 0,1  | -   | <u>†</u> | 160    | 00       |

4 ( cymbopogon winterianus ) 3 ( origanum majorana ) 2 ( mentha longifolia ) Samples: I (mentha vridis)

| Table    | (9);            | Table (6) Contd: | d:          |        |      |      |             |      |      |         |          |               |      |      |             |        |      |
|----------|-----------------|------------------|-------------|--------|------|------|-------------|------|------|---------|----------|---------------|------|------|-------------|--------|------|
| Time     | Mean a<br>RSD 1 |                  | Formic acid | c acid |      |      | Citric acid | acid |      | <u></u> | ſaitari  | Taitaric acid |      |      | Oxalic acid | s acid |      |
|          |                 | -                | 2           | 3      | 4    | 1    | 2           | 3    | 4    | 1       | 2        | 3             | 4    | 1    | 2           | 3      | 4    |
| ,        | u               | 504              | QΝ          | 641    | 493  | 2336 | 1974        | 2256 | 2288 | 1130    | QN       | 1244          | 1258 | 1235 | 973         | 1025   | 1096 |
| 1        | ր               | 1.19             | ΩN          | 1.15   | 1.30 | 0.10 | 0.12        | 0.10 | 0.10 | 1.42    | QN       | 1.43          | 1.40 | 0.10 | 0.19        | 0.15   | 0.11 |
| 97       | 4               | 324              | QN          | 629    | 311  | 1213 | 161         | 2253 | 1184 | 843     | Ð        | 1241          | 886  | 785  | 1/6         | 1022   | 879  |
| 0        | þ               | 0.22             | QΝ          | 1.15   | 1.34 | 0.14 | 0.12        | 0.10 | 0.15 | 1.45    | ON<br>ON | 1.43          | 1.45 | 0.14 | 61.0        | 0.15   | 0.14 |
| ,        | æ               | 149              | QN .        | 637    | 166  | 789  | 1233        | 2250 | 856  | 512     | Ð        | 1239          | 631  | 415  | 532         | 1019   | 531  |
| ,        | a               | 0.23             | QN          | 1.15   | 1.36 | 0.16 | 0.17        | 0.10 | 0.19 | 1.48    | ΩN       | 1.43          | 1.47 | 0.15 | 0.24        | 0.15   | 0.17 |
| 20       | æ               | 11               | ND          | 329    | 77   | 307  | 851         | 1344 | 464  | 218     | ON<br>ON | 161           | 317  | 126  | 322         | 862    | 217  |
| 3        | a               | 0.24             | ND          | 1.19   | 1.39 | 0.21 | 0.23        | 0.13 | 0.23 | 1.51    | ΩN       | 1.49          | 1.50 | 0.17 | 0.27        | 0.17   | 0.22 |
| 130      | æ               | 22               | ND          | 178    | 39   | 22   | 331         | 653  | 218  | 21      | £        | 218           | 125  | 27   | 149         | 164    | 79   |
| 071      | q               | 0.27             | ND          | 2.11   | 1.41 | 0.25 | 0.26        | 0.18 | 0.25 | 1.56    | £        | 1.53          | 1.53 | 0.23 | 0.28        | 0.19   | 0.24 |
| 77       | a               | Ð                | Ð           | 32     | 11   | ND   | 9           | 187  | 37   | ND      | QN       | 78            | 18   | ΩN   | 41          | 103    | 16   |
| <b>r</b> | ۵               | Ð                | QN          | 2.15   | 1.43 | ND   | 0.28        | 0.23 | 0.28 | ND      | ND       | 1.55          | 1.57 | ND   | 0.31        | 0.22   | 0.26 |
| 891      | =               | ND               | ND          | ND     | ND   | ND   | ND          | ND   | ND   | QN      | ΩN       | ΩN            | ND   | ND   | ND          | ND     | ND   |
| 001      | <b>a</b>        | ND               | ND          | ND     | ND   | ND   | ND          | ΩN   | ΠN   | ND      | ΩŽ       | Œ             | ΩN   | ΩN   | ΩN          | ND     | QN   |

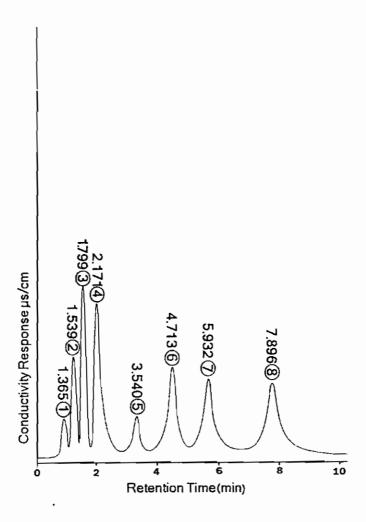



Fig . 5 . Typical resolution for a mixture of organic acids. column , shim – pack IC A1, temperature  $40^{\circ}\mathrm{C}$  , eluent mixture of 2.45 mM phthalic acids and 2.35 mM tris (hydroxymethyl) aminomethane (pH) 3.40; flow rate 1.5ml/min . peaks :1 = acetic acid; 2 = ascorbic acid; 3 = succinic acid; 4 = lactic acid; 5 = formic acid; 6 = citric acid; 7 = tartaric acid 8 = oxalic acid

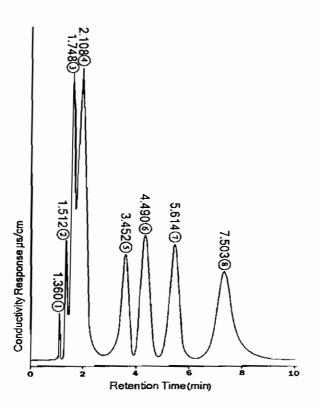
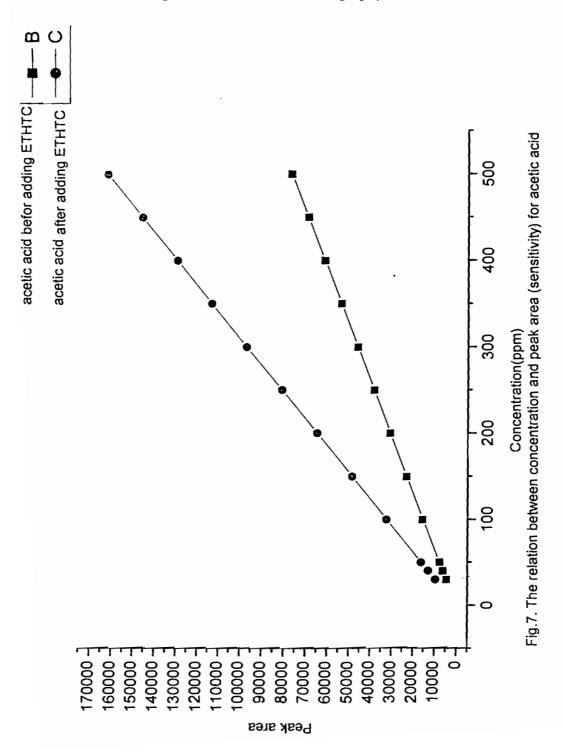




Fig. 6. Typical resolution for a mixture of organic acids. column, shim – pack IC A1, temperature 40°C, eluent mixture of 2.45 mM phthalic acids and 2.35 mM tris (hydroxymethyl) aminomethane + 0.2mM N{[(ethylamino) thioxomethyl] hydrazinocarbonylmethyl}trimethyl ammonium chloride (pH 3.63); flow rate 1.5ml/min. peaks: l= acetic acid; 2 = ascorbic acid; 3 = succinic acid; 4= lactic acid; 5 = formic acid; 6 = citric acid; 7 = tartaric acid 8 = oxalic acid.



#### **CONCLUSION**

An IC method with non suppressed conductivity detection for analyzing organic acids in some medicinal plants was developed and optimized. The optimal conditions for separating organic acids by using 2.45mM phthalic acid, 2.35mM tris (hydroxymethyl) aminomethane, 40 °C, flow rate 1.5ml/min. and pH 3.40 were found to be favorable. In order to increase the sensitivity the above eluent was used in addition to 0.2mM of ETHTC at pH 3.63. This new eluent gives more favorable and excellent results in comparison to that mentioned above in absence of ETHTC and that reported in literature. On using this ligand(ETHTC) a typical analysis was completed in less than 8 mins.

# REFERENCES

Bengtsson, L. and Samuelson, O. chromatographia, 4, 142 (1972).

Bengtsson, L. and Sauelson, O. Anal. Chim. Acta, 4, 93 (1971).

Ding, M.Y. Chen, R. R. and Luo, G. A. J. Chromatography A, 764, 341 (1997).

Ding, M.Y. Suzuki, Y. and Koizumi, H. Bunseki Kagaku, (1991).42, T129

Gansedo, M.C. and luch, B.S. J. Food Sci, 51, 571 (1986).

Jhan, G.N. Fernands, S.A. Garria, C.F. and da Silva, A.A. Phtochem. Anal. 13(2), 99 (2002).

Mostafa, M.M. unpublished results.

Palmer, J.K. and list, D.M. J.Agric food chem., 21, 903 (1973).

Palmer, J.K. the Connecticut Agricultural experimental station, new haven, GT, Bulletin 589 (1955).

Qiu, J. and Jin, X. J. Chromatography A, 950(1-2), 81 (2002).

Saccani, G. Gherardi, S. Trifiro, A. Soresi Bordini, C. Calza, M. and Freddi, C. J. chromatography, 706, 395 (1995).

Timpaad, J.D. Burke, J.J. J. Agric. Food . chem., 34, 910 (1986).

# الملخص العربي

تم إستخدام التحليل الكروماتوجرافي المستمر لتعيين بعض الأحماض العضوية حيث تم التعرف على ثمانية أحماض عضوية وفصلها وتقديرها بإستخدام عمود تبادل أينوني وتهدف الطريقة الى التعيين المتزامن وكذلك التقدير الكمي لعدد من الأحماض العضوية والذي يتيح إستخدام هذه الطريقة في التحاليل الروتينية. ولهذه الطريقة عدة مميزات .. فزمن التحليل قصير – وحدود إستخدام الطريقة ملائم حتى لتركيزات منخفضة كما أنها مستوفية للشروط المطلوبة في التحاليل الكيميائية كالدقية ، الحساسية – حدود التعيين الدقيق وغيرها.