cc. philose de

Faculty of Electronic Engineering

Dept. Electrical Comm. Engineering

1st term

(2nd year)

Subject: Fields and Waves

Final Exam (70 Mark)

Allowed Time: 3 Hour [both parts]

Date: 13/1/2020 (10 AM-1 PM)

Answer as much as you can

[1] Question One [15 Marks]:

- A) State and explain Coulomb's law for the vector force between two point charges in free space.
- B) Given the flux density $\overline{D} = \frac{16}{r} \cos(2\theta) \, \widehat{a}_{\theta} \, \text{C/m}^2$, use two different methods to find the total charge within the region 1<r<2 m, 1<0<2 rad, 1< ϕ <2 rad.
- C) if $\overline{A} = \widehat{a}_x + 2 \widehat{a}_y 3 \widehat{a}_z$ and $\overline{B} = 2 \widehat{a}_x \widehat{a}_y + \widehat{a}_z$ determine:
 - (a) The magnitude of projection of \overline{B} on \overline{A}
 - (b) The smallest angle between \overline{A} and \overline{B}
 - (c) The vector projection of \overline{A} on \overline{B}
 - (d) The unit vector perpendicular to the plane contain \overline{A} and \overline{B}

[2] Question Two [15 Marks]:

- A) Using Gauss law, Find E at any point due to long infinite charge wire
- B) An electric field in free space is given by $\overline{E} = x \, \widehat{a}_x + y \, \widehat{a}_y + z \, \widehat{a}_z \, \text{V/m}$. Find the work done in moving a 1- μ C charge through this field
 - (a) From (1, 1, 1) to (0, 0, 0);
 - (b) From $(\rho=2, \phi=0)$ to $(\rho=2, \phi=90^{\circ})$;
 - (c) From $(r=10, \theta=\theta_0)$ to $(r=10, \theta=\theta_0+180\circ)$.
- C) Let $S = 100 \text{ mm}^2$, d=3 mm, and r=12 for a parallel-plate capacitor,
 - (a) Calculate the capacitance.
 - (b) After connecting a 6-V battery across the capacitor, calculate E, D, Q, and the total stored electrostatic energy.

[3] Question Three [10 Marks]:

A) In a certain medium, the electric potential is given by

$$V(x) = \frac{\rho_o}{a\varepsilon_o} (1 - e^{-ax})$$

where ρ_{θ} and a are constants.

- (a) Find the electric field intensity, E.
- (b) Find the potential difference between the points x = d and x = 0.
- (c) If the medium permittivity is given by $\varepsilon(x) = \varepsilon_0 e^{ax}$, find the electric flux density, D, and the volume charge density, ρ_{ν} , in the region.
- (d) Find the stored energy in the region $(0 \le x \le d)$, $(0 \le y \le 1)$, $(0 \le z \le 1)$.
- B) Solve Laplace's equation for the potential field in the homogeneous region between two concentric conducting spheres with radii a and b, b > a, if V = 0 at r = b, and $V = V_0$ at r = a. Find the capacitance between them. (Assume that V is a function only of x)
- C) Given the current density $J=-10^4 \left[\sin(2x)\ e^{-2y}\ \widehat{a}_x + \cos(2x)\ e^{-2y}\ \widehat{a}_y\right] \, \mathrm{kA/m^2}$
 - (a) Find the total current crossing the plane y=1 in the \hat{a}_y direction in the region 0 < x < 1, 0 < z < 2.
 - (b) Find the total current leaving the region 0 < x, y < 1, 2 < z < 3 using two methods.

Best Wishes Dr. Hend A. Malhat