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KOHONEN NEURAL NETWORK BASED APPROACH FOR VOLTAGE
SECURITY MONITORING OF POWER SYSTEMS
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ABSTRACT:

This paper utilizes the artificial neural network of Kohonen for monitoring voltage security of
electric power systems. The Kohonen model is based on the self-organization feature mapping
technique that transforms mput patterns into neurons on the two dimensional grid. By using
the power flow analysis and the minimum singular value method a Kohonen Neural Network
(KNN} is trained to give the expected values of voltage stability index at each load bus as well
as for the whole system. Special emphasis is placed on the selection of input information and
anatysis of the network output resuits. The generalization capability of the KNN under various
operating conditions has been tested. Test results on IEEE 30-bus system show the
effectiveness of the proposed approach for monitoring voltage security in power systems.
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1. INTRODUCTION

Voltage instability m power systems has gamed increasing attention as a result of the voltage
collapse mcidents. The phenomenon is closely related to a shortage of reactive power supply,
which is characterised by a progressive decrease in voltage magnitude, starting at a particular
location and then spreading out across the whole system causing a complete or partial voltage
collapse i the power system [1].

At present, one of the major goals is to develop computer-aided procedures for use in real time
applications to evaluate voliage security of the power system In particular, two important
fimctions should be implemented, the voltage stability mopitoring and the voltage stability
assessment [2]. Using appropriate indicators, computed by on-line data from the state
estimator, the mopitoring fimction evaluates the status of voltage stability for the present
operating point of the system The assessment fimction predicts the voltage stability of a near
future power system condition and involves the ability to analyse hundreds of contingencies.

In recent years, a great deal of effort has been devoted to the development of practical tools to
analyse the static voltage stability of power systems. A number of analytical methods have been
proposed in the literature for voltage stability analysis. These methods can be classified as,
Power flow -based methods [3,4]; voltage collapse proximuty indicators {5]; miniroura singular
value method [6]; modal analysis [7]; and energy-based sensitivity method [8].

In more recent years, ANNs have been proposed as an alternative method for solving certam
difficult power system problems [9,10] where the conventional techniques have not achieved
the desired speed, accuracy and efficiency. However, most of the published work in the area of
voltage stability [11,12] has utilized multilayer perceptron networks trained by back
propagation for quantifylng voltage stability margins. However, approaches which simulate
back propagation networks have some shortcomings, particularly in respect of the relatively
long time needed for learning, sticking at local minima and accuracy is highly dependent on the
number of training data. Thus, a large number of mputs are needed, including contingency and
system configuration. This obviously poses problems in practical applications.

As an attractive alternative to the mmitilayer perceptron, KINNs offer some advantages,
particularly m the applications of clustering type problems, Results of applications to power
system static security assessment and contingency analysis are very encouraging [13,14]. KNN
is an unsupervised neural network which maps high dimensional input vectors mto a two-
dimensional surface outpwts. Input pattems with similar features, which contain sufficient
information about the voltage stability of power systerns, are clustered together in the output
map. The weight vectors associsted with the output map neurons are then used to find the
voltage stability margin. Thus, power system conditions can be effectively monitored in terms
of voltage instability and effective preventive control actions can be implemented to enhance
the overall system performance.

2. VOLTAGE STABILITY INDICATOR

The aim of this section is to illustrate a comprehensive procedure for voltage stability anatysis
and to define voltage-collapse proxamity indicator suitable for on-hne voltage stability
monitoring. The purpose of voltage stability indicator is to quantify how a particular operatmg
point is close to the point of voltage collapse. In this paper, the minimum singular value (MSV)
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method [6], is employed as a reference with which the proposed KINN-based approach will be
compared. The MSV is a mathematical measure of the distance between the studied operating
pomt and the steady state voltage stability limit. The two smgular vectors obtained together
with the MSV give a2 valuable information about the studied operating point of the power
system. In this section, a brief mtroduction to the method is given.

The linear power flow equations under normal operating conditions are given by
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Now, if the singular value decomposition is applied to the power flow Jacobian matrix , J, the
30 obtained matrix decomposition can be written as

1=UZV' =} o.u,v] (2)
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where U and V are n by n matrices, the smgular vectors ui and vi are the columms of the
matrices U and V respectively, and I is a diagonal matrix with

> ()=diag[o,(3)],i=12 ....,n (3)

where oiz 0 for all L The diagonal elements m the matrix T are usually ordered so that 61 2 o2
Z ... 2 ga 2 0. The MSV, on (J), is a measure of how the system operating point close to
singularity of the Jacobian matrix. If the mininmm smgular value is equal to zero, then the
studied matrix is singular and no power flow solution can be obtained. The effect on the

[a6 AV]T vector of a small change in the active and reactive power mjections can be written as
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Close to avoltage collapse point, when a singular value is almost zero, the system response is
determined by the MSV o', with singular vectors vn and un. Hence
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where un, vn are the last columom of U and V respectively, then
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From the above analysis, the following remarks can be made

(i) The smallest singular value, on, is an indicator to the static voltage stability humit.

(i) The weak buses can be ordered by using the elements of the right smgular vector, vo,
corresponding to the on. An indicator for the weakness of a bus is defined as

VST = Vj/ max {vi}, i=1,2,...n (8)

where V; is the element of vector Va comesponding to the voltage of bus j. Therefore, if VSIj
is less than a threshold value, the corresponding bus belongs to the critical bus. The above
defined mdicators allow an implementation of voltage stability moaitoring and control for the
power system.

3. KOHONEN SELF-ORGANIZING NEURAL NETWORK

The KNN belongs to a class of unsupervised neural networks which are very effective for
pattern classification problems [15]. There is no target output for evaluating an error finction
in these self organising networks. The leaming of the synaptic weights is unsupervised, which
means that, upon presentation of new mput vectors, the network determines these weights
dynamically, such that input vectors which are closely refated will excite neurons which are
close together or clustered.

3.1 Architecture of.ICNN

The KNN is an array of specific number of neurons. If these neurons are arranged on a grid in
a plane, the network is called two-dimensional, since this network maps high dimensional mput
vectors into a two-dimensional surface. Figure 1 shows a Kohonen network which consists of
an mput layer and a two-dimensional Kohonen layer. The network maps an n-dimensional
input vectors mto two dimensions in a nonlinear way. The input vectors are fully connected to
each Kohonen neuron. With the KNN, input data with similar features are mapped to
continuos clusters after enough imput vectors have been presented. The similarity between
input vectors can be measured by the Euclidean distance between two input patterns. The
algorithm that forms the output map requires a neighborhood to be defined around each
neuron. This neighborhood slowly decreases m size as the leaming algorithm proceeds and
finally just one neuron is fired to give the output of the network as shown in figure 1.

3.2 The Training Algorithm for KNN

During the learning phase the mput vectors are presented randomly. At each step of the
learning process, every neuron of the network calculates a scalar activation function which
depends on the input vector and on its own weight vector. This function is chosen to represent
a distance ||| between the input vector and the weight vector of the neuron under

consideration. Possible choices are the Fuclidean distance or the scalar product [15]. Kohonen
proposed a simplified rules for cartying out the unsupervised leaming. This method is based
on firing the neuron with the weight vector closest to the mput pattemn. Therefore, the weights
of fired nearon as well as the weight vectors of its neighborhood is updated. Now let the mput
vector of dimension n is given by

X() = (X (), X5 () onnne X () (%)
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where t is the input pattern number (t =1, 2, 3,...., tnax), tmax is the number of input patterns
and n is the number of input units,. The mput of output neuron i at learning step k can be
expressed as

Ii(k)=zxj(t)'wij(k) (10)

where wij (k) is the weight between neurons i and j.
The output of output neuron i at leaming step k is given by

0,(k)=o(L,(k)) (11)
where o(*) is a nonlinear function (see figure 2) such that

1 i L(k)>1
o(L(K)=<L(k) if 0SL(k)<1

0 if L(k)<O0 (12)

Input vector X1(t) X2(t) X3(t)......Xn(t)

A

Neighborhood 4{ —

Output Neuron Oi(k)
Fig. 1 Kohonen neural network Fig. 2 Output finction of Kohonen

Once the neural network is tramed, the mput pattern fires the output neuron closest to the
input pattern. The weights between output neurons are changed by:

Aw (k) =a(k).(I; (k). X;(t) - O, (k). w;(k)} (13)
where a(k) is a decreasing function with leaming step k.
0<ak) <l (14)

In the self organizing networks, there are several output neurons that respond to the input
pattern. Among the output neurons, the neuron with the largest output becomes the winnered
neuron defined as nwi(k). The input and output of neurons in equation (13) are determined by
the Euclidean norm, ie. the distance between neurons such as

d;=|n; ~n, (k)| (15)
where, |4 is the Euclidean norm, and ni is the neuron i. If the following equation is satisfied,

d;<y(k) (16)
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where y(k) is the distance from nw(k) at learning step k, then we have

Gk)=1, Oi(k)=1 (17)
therefore, equation (13) becomes

Awy (k) = (k)X (1) - wy (1)) (18)
Otherwise,

L(k)=0, Oifk)=0 (19)
From equation (19), equation {13) becomes

Awij(k) =0 (20)

Neurons around nw(k) satistying equation (16} are called ‘“topological neighborhood”.

The following summarises an algorithm used m this paper for traming the KNN:

Step 1: Set leaming step k = 0 and initialize weights wij{(0) between mput and output.
Step 2: Set k= k+1.

Step 3: Present new mput vectors to the network.

Step 4: Compute the distance to all neurons from an mput vector di(k) as follows

d; = "X‘w"" = Z(Xj(t)—wij(k))z (21)
i
Step 5: Find the winning neuron nw(k) that has the closest distance, d*(k), to mput pattern
X(t), where d*(k) is given by
d*(k) = min(di), is (Kohonen layer) (22)
Step 6: Find topological neighborhood around nwik) using Eqn. (16).
Step 7: Update weight vectors of a winning neuron nw(k) and topological neighborhood as

wij(k) = wij(k) + (k) (Xj(t) -wii(k)) (23)
Step 8: Iterate the procedure from step 2.

3.3 Input Information for KNN

One of the key issues for the application of ANN in power system for voltage stability
monitoring and control is how to select a limited mput variables, with salient features as the
mput information of the neural network Studies and utility experiences mdicate that voltage
mstability is mainly driven by heavily loading or by system contingencies. Therefore, the
following variables are important for voltage instability and are used as mput to the KNN. The
mput vector is given by

X=[pT.Q", V", B,QL. V3.1 | (24)

where P, Q, V of dimensions (nx1) and PG, QG, VG of dimensions (nGx1) are the vectors of
real powers, reactive powers and voltage magnitudes at the n load buses and nG generating
buses, respectively. The input subvector Ic is given by

T

Ie=[IL I (25)

takes mto account contingencies that may directly influence the voltage stability, for a given
operating point.
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4, TEST RESULTS

The proposed approach is tested on IEEE-30 bus system The system mcludes six generation
buses, 21 load buses and 41 transmission lines.

4.1 Training of KNN

To determime the mput vector of the KNN, a load flow analysis of the system was performed.
In the training phase, a large number of operating conditions related to voltage stability are
considered, mchzding:

(i) different loading conditions,

(i) different generation/load patterns.

(iii) single contingency analysis.

For each operating point, the MSV method is utilized to find the voltage stability margin and
to analyze the properties of clusters in the Kohonen output map. The number of neurons of the
Kohonen layer depends on the application, and the actual number should be large encugh to be
capable of forming sufficient clusters of mput vector. For the IEEE-30 bus system, tested in
this paper, three variables are considered for each load/generation bus. In order to take mto
account generation and lines outage, 6 and 41 input variables are mcluded, respectively. For
this test system, bus 1 is a siack bus and that buses 6, 9, 22, 25, 27 and 28 are floating buses.
Therefore, voltage, active and reactive power for these buses are omitted from the mput
vector. Thus, there are a total of 119 inputs which include 72 giving bus mformation and 47
giving single generator and line outage. The two-dimensional array of Kohones layer consists
of 60 x 60 output neurons. In other words the different operating conditions of the system are
classified into 3600 patterns.

4.2 Interpretation of Results

After training, the neuroms of the Kohonen network are clustered. The neurons of the same
pattern belong to the same cluster. There are different types of clusters in the output map
which represent different operating states of the system in terms of voltage stability. The first
type of clusters groups all safe operating conditions created by load varation of 15% up to
18.5% from the base case, and m such cases no voltage stability problems exists. The second
type of clusters represents the operating conditions in which the system faces severe voltage
violation problems caused by load mcrease or contingencies. The third type of clusters
represents the status of the system when the load is mcreased above 30 % from the base case.

To interpret the organization of the weight vectors, we note that, some of the neurons in
Kohonen layer are associated with several mput vectors, and some to none of the mput
vectors. However, the weight vectors for those neurons appear to represent feasible states of
the power system, which can be understood as generalization from the learned vectors. The
weight vectors themselves represent the weighted sum ofa certain nursber of mput vectors
which form a cluster. The Euclidean distance between weight vector and input vector is the
minimal distance between this mput vector and any weight vector of the network, If we assume
an voltage stability lirsit for each bus, the comparison of this limit to the cotresponding weight
vector component of neuron i indicates whether neuron i classifies system states that likely to
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violate this limit or not. When a test vector is apphed into the traived KNN, one of the neurons
m the Kohonen layer will be fired. The position of the fired neuron indicates the degree of
voltage stability, on the other hand, weight vectors of the fired neuron associated with each
load bus mput can be used to identify the voltage stability margin at these buses.

Table 1 gives the voitage stability margin at selected load buses as calculated by the MSV
method and the tramed KINN method. The results show that, at certain operating state, the
voltage stability margin at each bus is calculated with a good accuracy, helpmg system
operators in monitoring voltage stability. Figure 3 shows the variation of system voltage
stability margin as the system load mcreases. Test results have shown that the KNN-based
approach can produce quite accurate estimation of voltage stability margins under diversified
system operating conditions, except for very few of operating states very close to the collapse
point. To test the ability of the proposed KNN in performing the voltage stability assessment
function, a single-line outage contingency analysis was carried out. The assessment of each
contingency involved a load flow analysis, necessary to form the set of mputs for the KNN.
Table 2 flustrates the results of some selected cases for the values of mimivoum voltage stability
index (VSImin), and its location bus, as calculated by MSV method and the proposed KNN
method.  Also, table 3 illustrates the ranking process for weak buses, based on voitage stability
mdex , as the result of line outage from bus 8 to bus 28,

Table 1 Voltage stability margin at selected load buses for heavily loaded system.

Bus No MSV | KNN
12 0.2715 | 0.2713
13 0.2684 ] 0.2685
14 0.2355 0.2353
15 0.1972 0.1975
16 0.4444 0.4443
17 0.4235 0.4235
18 0.4136 0.4136
19 0.4179 0.418

T 20 0.3614 0.3612
21 0.3279 0.328
23 0.2756 0.2757
24 0.2637 0.2635
26 0.2349 0.2348
29 0.3979 0.3978
30 0.1608 0.1602
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Fig. 3 Voltage stability margin change with total percentage system loading

Table 2 Results of Contingency analysis

Contingency MSV method KNN method
Line outage VSImin Bus VSImin Bus
2-5 0.0776 5 0.0771 5
8-28 0.2969 30 0.2972 30
27-28 0.3175 30 0.3177 30
27-29 0.4754 29 0.4753 29
27 -30 0.4567 30 0.4566 30

Table 3 Ranking process of weak buses with line outage from bus 8 to bus 28.

Rank MSV KNN
1 26 26
2 30 30
3 29 29
4 24 24
5 23 20
5. CONCLUSIONS

This paper presents the application of an artificial neural network of Kohonen for monitoring
voltage security of electric power systems. The Kohonen model is based on the self-
organization feature mapping technique that transforms input patterns into neurons on two
dimensional grid. By using the power flow anaiysis and the minjmuwm simgular value method a
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KNN is trained to give the expected values of voltage stability mdex at each load bus and also
for the whole system. The generalisation capability of the KINN under various load and
contingency conditions show that the approach can be applied on-line to practical systems to
provide system operators with useful information about voltage security and control
Sinmlation results on IEEE 30-bus test system show that the proposed approach is promising
i a sense that the mapping technique helps power system operators to monitor voltage
security in power systems.

6. REFERENCES

(1] M. K Pal, “Voltage Stability: Analysis Needs, Modeling Requirements, and Modeling
Adequacy”, IEE Proc.-C, Vol 140, No. 4, pp. 279-286, July 1993.

[2]) M. Suzuki, S. Wada, M. Sato, T. Asano, Y. Kudo, “Newly Developed Voltage Security
Monitoring System”, IEEE Trans. on Power Systems, Vol. 7, No. 3, pp. 965-973, August
1992,

[3]1 Y. Tanmra, H Mori S. Iwamoto, “Relationship Between Voltage Collapse and Multiple
Load Flow Solutions in Electric Power Systems”, IEEE Trans. on Power Systems, Vol
PAS-102, No.5, pp. 1115-1123, May 1982, '

[4] V. Ajjarapu, C. Chisty, “The Continuation Power Flow. A Tool for Steady State Voltage
Stability Analysis”, IEEE Trans. on Power Systems, Vol 7, No.1, Febmary 1992.

[5] P. ALof G. Anderson, D. J. Hill, “Voltage Stability Indices for Stressed Power Systems”,
IEEE Trans. on Power Systems, Vol. 8, No.1, pp. 326-335, February 1993.

[6] P-A Lof, T. Smed, G. Anderson, D. J. Hill, *Fast Calculation of a Voltage Stability Index™
, [EEE Trans. on Power Systems, Vol 7, No.1, pp. 54-60, Feb. 1992.

[7]1 B. Gao, G. K. Morision, P. Kundur, “Voltage Stability Evaluation Using Modal Analysis”,
IEEE Trans. on Power Systems, Vol 7, No.4, pp. 1529-1536, November 1992.

[8] Themas J. Overbye, C. L. Demarco, “Use of Energy Methods for On-Line Assessment of
Power System Voltage Security”, IEEE Trans. on Power Systems, Vol 8, No.2, pp. 452-
458, May 1993,

[9] 8. Weerasooryia, M. A El-Sharkawy, M. Damborg, R. J. Marks I, “Towards Static-
Security Assessment of a Large-Scale Power System Using Neural Networks”, IEE Proc.-
C, Vol 139, No.1, January 1992,

[10] K P. Schmidt, “Application of Artificial Neural Networks to the Dynamic Anatysis of
Voltage Stability”, IEE Proc.-C, Vol. 144, No.4, pp.371-376, July 1997.

[11] A A El-Keib, X. Ma, “Application of Artificial Neural Networks m Voltage Stability
Assessment”, IEEE Trans, on Power Systerns, Vol 10, No.4, pp.1890-1896, November
1995,

{12] M. La Scala, M. Trovato, F. Torelli, “A Neural Network Method for Voltage Security
Monitoring”, IEEE Trans. on Power Systems, Vol 11, No.3, pp.1332-1341, August 1996.

[13] Dagmar Niebur, Alain J. Germond, “Power System Static Security Assessment Using the
Kohonen Neural Network Classifier”, [EEE Trans. on Power Systems, Vol7, No.2,
pp.865-872, May 1992.

[14] Y. H Song, H B. Wan, A. T. Johns, “Kohonen Neural Network Based Approach to
Voitage Weak Buses/Areas Identification”, IEE Proc.-C, Vol 144, No.3, pp.340-344,
May 1997.

[15] Christopher M. Bishop, ‘Neural Networks for Pattern Recognition’, Ondord University
Press Inc., New York, 1995.





