Response of Tomato Plants to Irrigation with Magnetized Water and some Foliar Application Treatments under Drip Irrigation System:

1-Vegetative Growth and Chemical Constituents of Leaves.

Dawa, K. K.; H. M. E. Abd El-Nabi and W. M. E. Swelam

Veget. and Flori. Dept. Fac. Agric., Mans. Univ., Egypt.

ABSTRACT

This experiment was conducted in summer seasons of 2016 and 2017 on tomato plants "6112" hybrid to evaluate tomato plants performance (vegetative growth characteristics and chemical constituents of leaves) in response to irrigation water treatments (magnetized and non-magnetized), foliar applications (chitosan, lithovit, selenium and yeast extract) and their interactions. Results indicated that the highest values of vegetative growth characteristics, *i.e.*, plant height, number of branches, number of leaves, leaf area, fresh and dry weights as well as chemical constituents of leaves as photosynthetic pigments (Chl. a, Chl. b, total Chl. a+b and carotenoids) and leaf minerals content (N, P, K, Ca, Mg, Zn, Mn) were recorded when plants irrigated with magnetized water as compared with plants irrigated with untreated water in both studying seasons. On the other hand, Fe content responded negatively to irrigation with magnetized water.Comparing the effect of foliar applications, all foliar application treatments significantly enhanced vegetative growth parameters, leaf minerals and pigments contents compared to the check treatment. Foliar application of chitosan at 250 ppm is the superior in its effect on all the aforementioned characteristics followed by yeast extract at 10 g/L then lithovit at 1.5 g/L in the two seasons except for Fe content. The best results of both vegetative growth attributes and chemical constituents of leaves were recorded when plants irrigated with magnetized water and sprayed with chitosan at 250 ppm in both seasons. Thus, this treatment could be recommended to improve tomato plants performance under similar conditions of this study.

Keywords: tomato plants, foliar application, chitosan, lithovit, selenium, yeast extract, vegetative growth, chemical composition.

INTRODUCTION

Tomato (*Lycopersicon esculentum* Mill), belongs to the family Solanaceae. Most of fruits are sold fresh, but large amounts are also processed. Fruits are used as a fresh salad vegetable, in stews, sauces, soups and other various dishes. Tomato fruits are consumed like a functional food all over the world due to the health promoting compounds and the different antioxidant molecules such as carotenoids, ascorbic acid, vitamin E and polyphenol compounds such as flavonoids. Tomatoes also contain minerals such as calcium, magnesium, iron and potassium, as well as microelements such a copper, zinc and manganese in addition to selenium.

There are previous studies indicated that magnetic treatment of irrigation water offers many benefits in agriculture such as enhancing vegetative growth, increasing yield, early maturity of crops, improving crop quality, increasing fertilizers efficiency and reducing cost of farm operations (Maheshwari and Grewal, 2009).

Using bio stimulants (chitosan and yeast extract) to promote plant growth has recently gained increasing attention worldwide. Chitosan a co-polymer of N-acetyl-d-glucosamine and d-glucosamine, formed from chitin, and applied in horticulture as a bio stimulant to induce pathogen resistance, enhance plant growth and abiotic stress tolerance and to. some researchers reported that chitosan enhanced plants performance, thereby increasing key enzymes activities of nitrogen metabolism (nitrate reductase, glutamine synthetase) and improving transportation of nitrogen (N) in leaves which in turn enhanced plant growth and development (Chibu and Shibayama, 2003).

Selenium is a trace element essential for both animals and plants, but is toxic at higher concentrations. Selenium content in soils varies considerably, and its availability in agricultural soils is usually low, therefore, Se is often used in fertilizers for crops. Several researchers have described the effect of Se application on vegetable crops (Abul-Soud and Abd Elrahman, 2016; Andrejiova *et al.*, 2016 and Santos-Vázquez *et al.*, 2016) and showed positive effects on antioxidant activity, productivity and yield.

Yeast extract is the natural compound contains many compounds as proteins and cytokinins that enhance cell enlargement and cell division which are safe and non-pollutant. Also, it contains haloes-6-phosphate synthase which affects plant development (Amer, 2004).

Nanotechnology opens a large scope of novel application in the fields of agricultural industries and biotechnology, because nanoparticles have unique physicochemical properties as, high reactivity, high surface area, particle morphology and tunable pore size. Lithovit is a natural CO₂ nano fertilizer contains organic calcite carbonate from natural limestone deposits, suitable and recommended for use in organic farming in the European Community, harmless to humans and animals and not hazardous to water (Bilal, 2010).

This study was carried out to evaluate possible effects of irrigation with magnetized water and some foliar applications on plant growth as well as chemical composition of leaves of tomato plants.

MATERIALS AND METHODS

Theis experiment was conducted in the two successive summer seasons of 2016 and 2017 on tomato plants "6112" hybride at a private farm at Sahragt El-Soghra near Mansoura, Dakahlia Governorate, Egypt to evaluate tomato plants performance (vegetative characteristics and chemical constituents of leaves) in response to irrigation water treatments (magnetized and non-magnetized), foliar applications (chitosan, lithovit, selenium and yeast extract) and their interactions.

The experiment layout was split plot system in a randomized complete block design with three replicates. The main plots were for irrigation water treatments, while foliar application treatments were distributed in the sub plots. The experimental unit area was 64 m^2 (2 drip lines \times 20 m long \times 1.6 m width). The seedlings were transplanted on one side of drip line at 50 cm apart.

The experiment included 18 treatments which were arranged as water irrigation treatments (Irrigation with magnetized and non-magnetized water) and nine

foliar application treatments; chitosan (250 and 500 ppm), Lithovit (1.5 and 2 g/L), selenium as Sodium Selenite (5 and 10 ppm), yeast extract (5 and 10 g/L) and the control treatment. All foliar spraying solutions were applied three times within 10 days intervals starting from 30 days after transplanting.

Seedlings of 45 days old were transplanted into open field in February (15th and 5th in the first and second season, respectively). During the two growing seasons preparation of the experimental soil, fertigation and pest control were applied as recommended by Egyptian Ministry of Agriculture and land reclamation.

Data recorded

Microbiological status:

It was evaluated in both soil irrigated with magnetized and untreated water in the second season after 98 days from transplanting according to the method described by Seeley and Van Demark (1981) and shown in Table 1.

Soil status:

Some soil properties were determined in both soil irrigated with magnetized and untreated water in the second season after 103 days from transplanting and shown in Table 2.

Table 1. Types and names of some bacteria presented in the experimental soil.

Sample type	Bacteria	Population
Irrigation with non -	E. coli	1×10 ⁵ cells/g dry
magnetized water	Bacillus sp.	soil
Irrigation with magnetized water	E. coli Bacillus sp. Enterobacter sp. Klebsiella sp.	2×10 ⁶ cells/g dry soil

Table 2. Some soil properties of the experimental soil during the second season:

No	ц W	'nП	EC Anions(meq/L)			Cations (meq/L) K ⁺¹ Na ⁺¹ Ca ⁺² Mg ⁺²			
110.	п. W	þП	dSm ⁻¹	HCO ⁻³	SO4 ⁻²	K^{+1}	Na ⁺¹	Ca ⁺²	Mg ⁺²
1	6.181	8.34	2.87	1.359	21.101	.315	12.80	11.11	8.689
2	6.231	8.52	1.78	1.456	12.184	.197	8.542	6.130	4.130

1: soil irrigated with untreated water.

2: soil irrigated with magnetized water.

Vegetative growth parameters:

Three plants were randomly taken from each treatment after 75 days from transplanting in the two seasons for measuring growth characters of tomato plants as plant height, number of branches/plant, number of leaves/plant, total leaf area /plant according to Koller (1972), fresh and dry weights.

Chemical constituents of leaves:

All studied chemical constituents parameters in tomato leaves were determined at 75 days after transplanting during both seasons. Chlorophylls a, b, total chlorophyll and carotenoids were determined according to the methods described by Wettstein (1957). In addition, nitrogen was determined according to piper (1947). Phosphorus was determined according to the method of Sandell (1950). Potassium was determined by the method described by Horneck and Hanson (1998). Calcium and magnesium were determined according to Jackson (1967). Iron, zinc and manganese were determined according to AOAC (1990).

Statistical analysis:

The obtained results were subjected to statistical analysis of variance according to Snedecor and Cochran (1967). The treatment means were compared using LSD test as described by Gomez and Gomez (1984).

RESULTS

Vegetative growth parameters

Effects of magnetic treatment of irrigation water:

Data presented in Table 3 show growth performance of tomato plants in response to irrigation with magnetized and non-magnetized water in the two seasons of study. The obtained results show that growth attributes like plant height, number of branches and leaves, fresh and dry weights as well as total leaf area differed significantly due to irrigation water treatments. Plants irrigated with magnetized water significantly recorded the highest values of all the aforementioned characteristics in both growing seasons as compared with those irrigated with untreated water.

Effects of foliar applications:

Comparing the effect of foliar application treatments (chitosan, lithovit, yeast extract and selenium) on vegetative growth characteristics of tomato plants, it was found that all vegetative growth parameters increased in response to foliar application treatments in the two growing seasons as compared to the check treatment (sprayed with tap water). Data in Table 3 clearly indicate that higher significant values of all studied parameters were recorded with spraying chitosan at 250 ppm followed by spraying yeast extract at 10 g/L in both seasons. Foliar application of lithovit at 1.5 g/L came in the third order followed by other foliar application treatments. The control plants recorded the lowest values of all studied vegetative parameters in both seasons.

Effect of interaction between irrigation water treatments and foliar applications:

Data in Table 3 show that plant height, number of branches and leaves, fresh and dry weights and leaf area per plant significantly affected by the interaction between irrigation water and foliar application treatments (chitosan, lithovit, selenium and yeast extract) in the two growing seasons. Higher values of all the aforementioned characters were recorded by plants irrigated with magnetized water and sprayed with all foliar application treatments. Foliar application of chitosan at 250 ppm came in the first order followed by yeast extract at 10 g/L then lithovit at 1.5 g/L. On the other hand, the less values were recorded when plants irrigated with non-magnetized water and sprayed with tap water in the two growing seasons.

Chemical constituents of leaves

Effects of magnetic treatment of irrigation water:

Data presented in Tables 4 and 5 show the impact of irrigation with magnetized and non-magnetized water on leaf minerals content (N, P, K, Ca, Mg, Fe, Zn and Mn) and pigments (Chl. a, Chl. b, total chlorophyll and carotenoids) of tomato leaves. It was noticed higher significant values of all mentioned parameters were obtained by irrigation with magnetized water except for Fe in both seasons compared to irrigation with untreated water. Fe content recorded the highest values when plants irrigated with non-magnetized water in both seasons.

Table 3. Vegetative growth characteristics of tomato plants as affected by irrigation water treatments and foliar applications during summer seasons of 2016 and 2017 after 75 days from transplanting.

	foliar applicatio	no dui ing suinn	Dlant he	eight(cm)				
Treatn	nents		2016	2017	No. of leave	ves/piant . 2017	No. of brand 2016	2017
A) Ir	rigation water treats	ments:	2010				2010	
Magnet	tized		64.7	72.8	88.2	93.4	14.6	16.5
Non-ma	agnetized		49.0	56.9 *	63.2	68.4	10.3	12.2
F. test B) Fo	oliar applications:		Ψ	Ψ	Ψ	Ψ	Ψ	т
		250 ppm	66.4	76.0	89.5	97.7	15.9	18.1
Chitosa	an	500 ppm	53.5	61.4	75.1	80.3	12.1	14.4
Lithovi	it	1.5 g	62.1	70.0	79.8	87.9	13.0	14.9
		2 g	55.0 55.0	62.9 62.9	77.1 76.4	82.3 81.6	11.2 12.2	13.1 14.1
Seleniu	ım	5 ppm 10 ppm	59.9	67.8	78.7	79.0	11.5	13.1
Yeast e	vetro ot	5 g	50.0	57.8	64.3	69.5	11.0	12.9
		10 g	64.3	72.1	83.8	88.5	15.6	16.7
Control L.S.D.			45.7 2.1	53.0 2.3	56.5 4.6	61.3 4.3	9.7 0.5	11.6 0.6
Interact	tion between irrigat	ion water treatme		r application		4.3	0.5	0.0
meraci		250 ppm	80	91.2	106.4	115.0	20.2	22.8
_	Chitosan	500 ppm	58.3	66.2	84.3	89.5 98.8	13.7	15.6
Magnetized	Lithovit	1.5 g	71.4	79.3	94.1	98.8	15.2	17.1
eti		2 g 5 ppm	57.4 59.0	65.3 66.9	91.7 81.9	96.9 87.1	12.2 14.4	14.1 16.3
ng,	Selenium	10 ppm	69.3	77.2	84.1	89.3	12.2	13.5
\mathbb{Z}	Yeast extract	5 ĝ	55.8	63.6	78.8	84.0	12.6	14.5
		10 g	75.9 55.7	83.6	95.9 76.2	99.3	19.8	21.0
	Control	250 ppm	55.7 52.9	62.4 60.8	76.2	80.7 80.4	11.6 11.6	13.5
pa	Chitosan	500 ppm	48.7	56.6	65.9	71.1	10.5	13.3
tiza	Lithovit	1.5 g	52.8	60.7	71.8	77.0	10.8	12.7
ine	LILIIOVIL	2 g	52.7	60.6	62.5	67.7	10.2	12.1
Jag	Selenium	5 ppm	51.0	58.9 58.4	70.9 63.4	76.1 68.6	10.1 10.8	12.0 12.7
n-c	T T	10 ppm	50.5 44.2	52.1	49.8	55.0	9.5	11.4
Non-magnetized	Yeast extract	5 g 10 g	52.7	60.6	75.5	77.7	11.3	13.2
	Control		35.8	43.7	36.8	42.0	7.8	9.7
								0.8
L.S.D.	at 5 %	T.	2.9	3.3	6.5	6.2	0.7	
Treatn		<u>F</u>	resh weight	(gm/plant)	Dry weigh	nt (gm/plant) af area (m	² /plant)
Treatn A) In	nents rigation water treati		resh weight 2016					² /plant) 2017
Treatn A) Iri Magnet	nents rigation water treats tized		resh weight 2016 817.9	(gm/plant) 2017 868.1	Dry weigh 2016 90.1	nt (gm/plant 2017 95.1	2016 22.82	2/plant) 2017 24.95
A) Iri Magnet Non-ma	nents rigation water treati		817.9 456.6	(gm/plant) 2017 868.1 507.2	90.1 53.8	95.1 58.8	22.82 10.82	2/plant) 2017 24.95 13.62
A) Irr Magnet Non-ma F. test	nents rigation water treati tized agnetized		resh weight 2016 817.9	(gm/plant) 2017 868.1	Dry weigh 2016 90.1	nt (gm/plant 2017 95.1	2016 22.82	2/plant) 2017 24.95
A) Ir Magnet Non-ma F. test B) Fo	nents rigation water treati tized agnetized oliar applications:	ments:	817.9 456.6	(gm/plant) 2017 868.1 507.2	90.1 53.8	95.1 58.8	22.82 10.82	2/plant) 2017 24.95 13.62
A) Irr Magnet Non-ma F. test	nents rigation water treati tized agnetized oliar applications:	250 ppm 500 ppm	817.9 456.6 * 766.3 619.0	(gm/plant) 2017 868.1 507.2 * 825.2 669.5	90.1 53.8 * 90.3 65.9	95.1 58.8 96.8 72.9	2016 2016 22.82 10.82 * 25.03 16.93	2/plant) 2017 24.95 13.62 * 26.64 19.21
A) Ir Magnet Non-ma F. test B) Fo	nents rigation water treati tized agnetized oliar applications:	250 ppm 500 ppm 1.5 g	817.9 456.6 * 766.3 619.0 660.8	(gm/plant) 2017 868.1 507.2 * 825.2 669.5 711.4	90.1 53.8 * 90.3 65.9 81.6	95.1 58.8 96.8 72.9 86.6	22.82 10.82 25.03 16.93 19.53	2/plant) 2017 24.95 13.62 * 26.64 19.21 20.98
A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi	nents rigation water treati tized agnetized oliar applications: an	250 ppm 500 ppm 1.5 g 2 g	766.3 619.0 660.8 599.0	(gm/plant) 2017 868.1 507.2 * 825.2 669.5 711.4 660.6	90.1 53.8 * 90.3 65.9 81.6 69.4	95.1 58.8 * 96.8 72.9 86.6 74.4	22.82 10.82 25.03 16.93 19.53 14.68	24.95 13.62 * 26.64 19.21 20.98 16.63
A) Ir Magnet Non-ma F. test B) Fo Chitosa	nents rigation water treati tized agnetized oliar applications: an	250 ppm 500 ppm 1.5 g 2 g 5 ppm	766.3 619.0 660.8 599.0 625.4	(gm/plant) 2017 868.1 507.2 * 825.2 669.5 711.4 660.6 676.0	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2	95.1 58.8 * 96.8 72.9 86.6 74.4 74.2	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92
A) Ir Magnet Non-ma F. test B) Fo Chitosa Lithovi	rigation water treatifized agnetized oliar applications: an	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm	766.3 619.0 660.8 599.0 625.4 608.7 631.5	868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07
A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e	nents rigation water treatitized agnetized oliar applications: an it	250 ppm 500 ppm 1.5 g 2 g 5 ppm	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5	868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22
Treatm A) Ir Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control	rigation water treatifized agnetized oliar applications: an it um extract	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1	(gm/plant) 2017 868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D.	nents rigation water treatitized agnetized oliar applications: an it im extract l at 5 %	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9	868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2	95.1 58.8 * 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D.	rigation water treatifized agnetized oliar applications: an an extract l at 5 % tion between irrigat	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia	868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 ns (A ×B	95.1 95.1 58.8 * 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99
Treatm A) Ir. Magnet Non-mag F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D.: Interact	nents rigation water treatitized agnetized oliar applications: an it um extract 1 at 5 %	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8	868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 ns (A×E) 118.1 85.5	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70
Treatm A) Ir. Magnet Non-mag F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D.: Interact	rigation water treatifized agnetized oliar applications: an an extract l at 5 % tion between irrigat	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0	868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 642.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63
Treatm A) Ir. Magnet Non-mag F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D.: Interact	rigation water treatitized agnetized oliar applications: an it immextract lat 5 % tion between irrigat Chitosan Lithovit	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6	868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 91.6 107.0 83.7	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35
Treatm A) Ir. Magnet Non-mag F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D.: Interact	nents rigation water treatitized agnetized oliar applications: an it im extract l at 5 % tion between irrigat Chitosan	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6 776.0 816.3	868.1 507.2 869.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 ns (A ×B 118.1 85.5 102.0 78.8 80.8	95.1 95.1 58.8 * 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 124.8 94.6 107.0 83.7 85.8 89.8	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.39 27.99
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D.	rigation water treatifized agnetized agnetized oliar applications: an it extract 1 at 5 % tion between irrigat Chitosan Lithovit Selenium	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6 776.0 816.3 784.4	868.1 507.2 * 868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 856.9 834.9	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1	95.1 95.1 58.8 * 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 124.8 94.6 107.0 83.7 85.8 89.8 89.8	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.35 18.39 27.99 20.89
Treatm A) Ir. Magnet Non-mag F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D.: Interact	rigation water treatitized agnetized agnetized oliar applications: an it um extract l at 5 % tion between irrigat Chitosan Lithovit Selenium Yeast extract	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6 776.0 818.6 776.0 818.4 4882.4	868.1 507.2 * 868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 834.9 933.0	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1 101.6	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 94.6 107.0 83.7 85.8 89.8 86.4 106.6	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61 28.40	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.39 27.99 20.89 30.63
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D. Interact	rigation water treatitized agnetized agnetized oliar applications: an it it immextract last 5 % tion between irrigat Chitosan Lithovit Selenium Yeast extract Control	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6 776.0 816.3 784.4 882.4 673.6	868.1 507.2 * 868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 856.9 834.9 933.0 714.1	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1 101.6 72.6	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 91: 124.8 94.6 107.0 83.7 85.8 89.8 86.4 106.6 77.6	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61 28.40 15.14	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.39 27.99 20.89 30.63 17.42
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D. Interact	rigation water treatitized agnetized agnetized oliar applications: an it um extract l at 5 % tion between irrigat Chitosan Lithovit Selenium Yeast extract	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 500 ppm	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6 776.0 816.3 784.4 882.4 673.6 550.2 431.1	868.1 507.2 * 868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 834.9 933.0	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1 101.6 72.6 63.8 46.3	95.1 95.1 58.8 * 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 91.6 107.0 83.7 85.8 89.8 86.4 106.6 77.6 68.8 51.3	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61 28.40	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.39 27.99 20.89 30.63 17.42 16.79 12.71
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D. Interact	rigation water treatitized agnetized agnetized oliar applications: an it um extract l at 5 % tion between irrigat Chitosan Lithovit Selenium Yeast extract Control Chitosan	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g 20 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 ppm 10 ppm 5 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 5 ppm 1.5 g 10 ppm 5 ppm 1.5 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6 776.0 816.3 784.4 882.4 673.6 550.2 431.1 500.7	868.1 507.2 * 868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 856.9 834.9 933.0 714.1 600.8 481.7 551.2	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1 101.6 63.8 46.3 61.2	95.1 95.1 58.8 * 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 94.6 107.0 83.7 85.8 89.8 86.4 106.6 67.6 68.8 51.3 66.2	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61 28.40 15.14 14.51 10.43 12.72	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.39 27.99 20.89 30.63 17.42 16.79 12.71 13.33
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D. Interact	rigation water treatitized agnetized agnetized oliar applications: an an arrival at 5 % tion between irrigat Chitosan Lithovit Selenium Yeast extract Control Chitosan Lithovit	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g 20 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 ppm 10 ppm 5 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 2 ppm 1.5 g 5 ppm 1.5 g 10 ppm 5 ppm 1.5 g	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6 776.0 816.3 776.0 816.3 776.0 816.3 776.0 816.3 776.0 816.3 776.0	868.1 507.2 * 868.1 507.2 * 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 856.9 834.9 933.0 714.1 600.8 481.7 551.2 452.0	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1 101.6 72.6 63.8 46.3 61.2 60.0	95.1 58.8 * 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 94.6 107.0 83.7 85.8 89.8 86.4 106.6 77.6 68.8 51.3 66.2 65.0	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61 28.40 15.14 14.51 10.43 12.72 12.63	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.35 18.39 27.99 20.89 30.63 17.42 16.79 12.71 13.33 14.91
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D. Interact	rigation water treatitized agnetized agnetized oliar applications: an it um extract l at 5 % tion between irrigat Chitosan Lithovit Selenium Yeast extract Control Chitosan	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g sion water treatmed 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 pp	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6 776.0 816.3 778.4 474.9	868.1 507.2 ** 868.1 507.2 ** 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 834.9 933.0 714.1 600.8 481.7 551.2 452.0 525.5	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1 101.6 72.6 63.8 46.3 61.2 60.0 57.7	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 94.6 107.0 83.7 85.8 89.8 86.4 106.6 77.6 68.8 51.3 66.2 65.0 62.7	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61 28.40 15.14 14.51 10.43 12.72 12.63 9.17	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.39 27.99 20.89 30.63 17.42 16.79 12.71 13.33 14.91 11.45
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D. Interact	rigation water treatitized agnetized agnetized oliar applications: an an art treatitized agnetized oliar applications: an art treation of the sector of the	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g ion water treatmed 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 816.3 776.0 816.3 784.4 882.4 673.6 550.2 431.1 500.7 379.4 474.9 401.4 478.5	868.1 507.2 868.1 507.2 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 856.9 834.9 933.0 714.1 600.8 481.7 551.2 452.0 525.5 435.2 529.1	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1 101.6 72.6 63.8 46.3 61.2 60.0 57.7 45.0 57.1	95.1 58.8 * 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 91.6 107.0 83.7 85.8 89.8 86.4 106.6 77.6 68.8 51.3 66.2 65.0 62.7 49.9 62.1	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61 28.40 15.14 14.51 10.43 12.72 12.63 9.17 8.40 9.11	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.39 27.99 20.89 30.63 17.42 16.79 12.71 13.33 14.91 11.45 10.68 17.25
Treatm A) Ir. Magnet Non-mag F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D.: Interact	rigation water treatitized agnetized agnetized oliar applications: an an arrival at 5 % tion between irrigat Chitosan Lithovit Selenium Yeast extract Control Chitosan Lithovit Selenium Yeast extract Control Chitosan Chitosan Lithovit Selenium Yeast extract Control Chitosan Lithovit Selenium Yeast extract	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g sion water treatmed 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 pp	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 818.6 776.0 816.3 784.4 882.4 673.6 550.2 431.1 500.7 379.4 474.9 401.4 478.5 508.5	868.1 507.2 ** 868.1 507.2 ** 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 834.9 933.0 714.1 600.8 481.7 551.2 452.0 525.5 435.2 529.1 559.1	90.1 53.8 * 90.3 65.9 81.6 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1 101.6 72.6 63.8 46.3 61.2 60.0 57.7 45.0 57.1 62.4	95.1 58.8 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 124.8 94.6 107.0 83.7 85.8 89.8 86.4 106.6 67.6 68.8 51.3 66.2 65.0 62.7 49.9 62.1 67.4	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61 28.40 15.14 14.51 10.43 12.72 12.63 9.17 8.40 9.11 13.48	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.39 27.99 20.89 30.63 17.42 16.79 12.71 13.33 14.91 11.45 10.68 17.25 15.79
Treatm A) Ir. Magnet Non-ma F. test B) Fo Chitosa Lithovi Seleniu Yeast e Control L.S.D. Interact	rigation water treatitized agnetized agnetized oliar applications: an an art treatitized agnetized oliar applications: an art treation of the sector of the	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g ion water treatmed 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm	766.3 619.0 660.8 599.0 625.4 608.7 631.5 695.5 529.1 19.9 ents and folia 982.3 806.8 821.0 816.3 776.0 816.3 784.4 882.4 673.6 550.2 431.1 500.7 379.4 474.9 401.4 478.5	868.1 507.2 868.1 507.2 825.2 669.5 711.4 660.6 676.0 646.0 682.0 746.0 572.1 19.1 r application 1049.6 857.4 871.5 869.1 826.5 856.9 834.9 933.0 714.1 600.8 481.7 551.2 452.0 525.5 435.2 529.1	90.1 53.8 * 90.3 65.9 81.6 69.4 69.2 67.3 69.6 82.7 51.6 1.2 118.1 85.5 102.0 78.8 80.8 89.7 82.1 101.6 72.6 63.8 46.3 61.2 60.0 57.7 45.0 57.1	95.1 58.8 * 96.8 72.9 86.6 74.4 74.2 69.9 74.2 87.0 56.5 1.3 91.6 107.0 83.7 85.8 89.8 86.4 106.6 77.6 68.8 51.3 66.2 65.0 62.7 49.9 62.1	22.82 10.82 * 25.03 16.93 19.53 14.68 12.64 16.72 12.79 20.94 12.13 1.09 35.55 23.42 26.35 16.74 16.11 25.04 18.61 28.40 15.14 14.51 10.43 12.72 12.63 9.17 8.40 9.11	24.95 13.62 * 26.64 19.21 20.98 16.63 14.92 19.33 19.07 23.22 13.57 0.99 36.49 25.70 28.63 18.35 18.39 27.99 20.89 30.63 17.42 16.79 12.71 13.33 14.91 11.45 10.68 17.25

Table 4. Mineral contents of tomato leaves as affected by irrigation water treatments and foliar applications during summer seasons of 2016 and 2017 after 75 days from transplanting.

during summer seasons of 2016 and 2017 after 75 days from transplanting. Treatments N (%) P (%) K (%) Ca (%)										
Treat	ments		2016	(%) 2017	2016	(%) 2017	2016	%) 2017	<u> </u>	2017
	rigation water trea	atments:	2 62	4.04	0.534	0.576	2.06	2.45	0.208	0.219
Magne Non-n	nagnetized		3.63 2.36 *	2.77	0.334	0.576 0.288 *	2.96 1.54	2.45 1.03	0.103	0.116
F. test	Foliar applications	*	*	*	*	*	*	*	*	
Cl : 250 ppm			4.24	4.65	0.630	0.672	2.95	2.44	0.199	0.213
		500 ppm 1.5 g	2.80	3.21 3.62	0.341 0.412	0.383 0.454	2.15 2.62	1.64 2.11	0.150 0.161	$0.161 \\ 0.172$
Lithov	vit	2 g	3.21 2.87	3.28	0.349	0.391	2.21	1.70	0.145	0.161
Seleni	um	5 ppm 10 ppm	3.04 2.78	3.45 3.19	0.339 0.363	0.383 0.405	2.01 2.37	1.50 1.87	0.145 0.152	0.156 0.163
Yeast	extract	5 g	2.68	3.09	0.362	0.404	1.92	1.41	0.157	0.168
Contro	ol	10 g	3.29 2.07	3.70 2.48	0.495 0.221	$0.537 \\ 0.263$	2.68 1.33	2.17 0.82	$0.166 \\ 0.122$	0.177 0.133
	. at 5 % ction between irri	gation water	0.28	0.28	0.047	0.047	0.23	0.23	0.007	0.008
micra	Chitosan	250 ppm	5.66	6.07	0.965	1.007	3.85	3.34	0.271	0.282
p		500 ppm 1.5 g	3.02 3.82	3.43 4.23	$0.408 \\ 0.540$	$0.450 \\ 0.582$	3.12 3.37	2.61 2.86	0.204 0.209	0.215 0.221
tize	Lithovit	2 g	3.23	3.64	0.464	0.506	2.70	2.19	0.201	0.212
Magnetized	Selenium	5 ppm 10 ppm	3.43 3.24	3.84 3.65	0.447 0.482	0.489 0.524	2.55 3.29	2.04 2.78	0.193 0.207	0.204 0.218
Ma	Yeast extract	5 g 10 g	3.35	3.76	0.498	0.540	2.26	1.75	0.209	0.220
	Control	10 g	3.94 2.99	4.35 3.40	0.699 0.306	0.741 0.348	3.42 2.07	2.91 1.56	0.214 0.160	0.225 0.171
р	Chitosan	250 ppm	2.82	3.23	0.295	0.337	2.05	1.54	0.126	0.143
Non-magnetized		500 ppm 1.5 g	2.59 2.64 2.51	3.00 3.05 2.92	0.274 0.285	0.316 0.327	1.19 1.87	0.68 1.36	0.096 0.113	0.107 0.124
gne	Lithovit	2 g	2.51 2.60	2.92 3.01	0.235 0.231	0.277 0.274	1.71 1.46	1.20	0.089 0.098	0.111 0.109
ma	Selenium	5 ppm 10 ppm	2.32	2.73	0.244	0.286	1.46	0.95 0.95	0.098	0.109
-uo	Yeast extract	5 g 10 g	2.02 2.64	2.43 3.05	0.225 0.291	0.267 0.333	1.58 1.94	1.07 1.43	0.106 0.118	0.117 0.129
	Control	10 g	1.16	1.57	0.136	0.178	0.60	0.09	0.085	0.096
L.S.D. at 5 %		0.40	0.40	0.067	0.067	0.330	0.331	0.010	0.011	
				(%)				nm		
Treat	ments		Mg 2016	(%) 2017	Fe p 2016		Zn p 2016	opm 2017	Mn 2016	
Treat	ments rrigation water tro	eatments:	Mg 2016	(%) 2017	Fe p 2016	pm 2017	Zn p 2016	2017	Mn 2016	ppm 2017
Treat A) I Magne Non-n	ments rrigation water treetized nagnetized	eatments:	Mg 2016 0.558 0.162	0.546 0.149	Fe p 2016	pm 2017 181.1	Zn p 2016 11.937 7.466	pm	Mn 2016 192.15 107.08	2017 182.06 97.00
A) I Magne Non-n F. test	ments Trigation water treetized nagnetized		Mg 2016	(%) 2017 0.546	Fe p 2016	pm 2017	Zn p 2016 11.937	2017 13.278	Mn 2016	2017 182.06
A) I Magne Non-n F. test	ments rrigation water treetized nagnetized Foliar applications	s: 250 ppm	Mg 2016 0.558 0.162 * 0.497	0.546 0.149 0.483	Fe p 2016 182.2 372.4 * 308.2	2017 181.1 339.6 283.5	Zn p 2016 11.937 7.466 *	2017 13.278 8.807 *	Mn 2016 192.15 107.08 *	2017 182.06 97.00 *
A) I Magne Non-n F. test B) I Chitos	ments (rrigation water treetized nagnetized Foliar applications	s: 250 ppm 500 ppm 1.5 g	Mg 2016 0.558 0.162	0.546 0.149 0.326 0.380	Te p 2016 182.2 372.4 * 308.2 275.4 304.2	2017 181.1 339.6 * 283.5 264.2 279.8	Zn r 2016 11.937 7.466 * 13.280 9.115 9.775	13.278 8.807 * 14.620 10.456 11.115	Mn 2016 192.15 107.08 * 187.11 131.83 170.03	182.06 97.00 * 177.01 121.73 159.98
A) I Magner Non-n F. test B) I Chitos	ments rrigation water treetized nagnetized Foliar applications san	s: 250 ppm 500 ppm 1.5 g	0.558 0.162 * 0.497 0.339 0.392 0.373	0.546 0.149 0.483 0.326 0.380 0.361	Te p 2016 182.2 372.4 * 308.2 275.4 304.2 269.7	2017 181.1 339.6 * 283.5 264.2 279.8 263.1	Zn r 2016 11.937 7.466 * 13.280 9.115 9.775 9.140	13.278 8.807 * 14.620 10.456 11.115 10.481	Mn 2016 192.15 107.08 * 187.11 131.83 170.03 137.95	182.06 97.00 * 177.01 121.73 159.98 127.90
A) I Magne Non-n F. test B) I Chitos	ments rrigation water treetized nagnetized Foliar applications san	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm	0.558 0.162 0.497 0.339 0.392 0.373 0.342 0.354	0.546 0.149 0.483 0.326 0.380 0.361 0.330 0.342	7 Fe p 2016 182.2 372.4 ** 308.2 275.4 304.2 269.7 246.4 273.7	2017 181.1 339.6 * 283.5 264.2 279.8 263.1 236.2 252.1	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901	13.278 8.807 * 14.620 10.456 11.115 10.481 10.303 10.242	Mn 2016 192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 145.81	182.06 97.00 177.01 121.73 159.98 127.90 132.43 135.71
A) I Magne Non-n F. test B) I Chitos Lithov Seleni	ments rrigation water treetized nagnetized Foliar applications san	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361	0.546 0.149 0.483 0.326 0.380 0.361 0.330 0.342 0.349	7016 182.2 372.4 ** 308.2 275.4 304.2 269.7 246.4 273.7 265.8	2017 181.1 339.6 * 283.5 264.2 279.8 263.1 236.2 252.1 255.8	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340	13.278 8.807 ** 14.620 10.456 11.115 10.481 10.303 10.242 10.681	Mn 2016 192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 145.81 147.28	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18
Treat A) I Magne Non-n F. test B) I Chitos Lithov Seleni Yeast Control	ments rrigation water treetized nagnetized Foliar applications san vit tum extract	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173	0.546 0.149 0.483 0.326 0.380 0.361 0.330 0.342 0.349 0.394 0.161	Te p 2016 182.2 372.4 * 308.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547	13.278 8.807 * 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887	Mn 2016 192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30
Treat A) I Magne Non-n F. test B) I Chitos Lithov Seleni Yeast Contro L.S.D	ments rrigation water treetized nagnetized Foliar applications san vit tum extract ol . at 5 %	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063	0.546 0.149 0.483 0.326 0.380 0.361 0.330 0.342 0.349 0.394 0.161 0.063	Te p 2016 182.2 372.4 * 308.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994	13.278 8.807 * 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597	Mn 2016 192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 147.28 178.63	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53
Treat A) I Magne Non-n F. test B) I Chitos Lithov Seleni Yeast Contro L.S.D	ments rrigation water tre etized nagnetized Foliar applications san vit um extract ol . at 5 % ction between irri	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment	0.546 0.149 0.483 0.326 0.380 0.361 0.330 0.342 0.349 0.394 0.161 0.063 s and foli	308.2 275.4 304.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 167.7	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 ations (A >	7.466 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 × B): 17.191	13.278 8.807 ** 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993	192.15 107.08 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870	182.06 97.00 ** 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864
Treat A) I Magne Non-n F, test B) I Chitos Lithov Seleni Yeast Contro L.S.D Interace	ments Irrigation water treetized nagnetized Foliar applications san vit um extract ol . at 5 % ction between irri Chitosan	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.565	0.546 0.149 0.483 0.326 0.380 0.361 0.342 0.349 0.394 0.161 0.063 0.5 and folio	308.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 ations (A > 204.7 172.2	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 × B): 17.191 11.284	13.278 8.807 ** 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625	192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13
Treat A) I Magne Non-n F, test B) I Chitos Lithov Seleni Yeast Contro L.S.D Interace	ments Irrigation water treetized nagnetized Foliar applications san Vit tum extract ol at 5 % ction between irri Chitosan Lithovit	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.565 0.604 0.572	0.546 0.149 0.483 0.326 0.380 0.361 0.330 0.342 0.349 0.161 0.063 s and foli 0.782 0.553 0.592 0.560	308.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.7 182.2 208.7 199.8	283.5 264.2 279.8 263.1 236.2 252.1 236.2 255.8 395.6 113.0 44.07 ations (A > 204.7 172.2 200.8 189.8	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 < B): 17.191 11.284 11.492 11.085	13.278 8.807 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426	192.15 107.08 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 1166.23	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.23
Treat A) I Magne Non-n F, test B) I Chitos Lithov Seleni Yeast Contro L.S.D Interace	ments Irrigation water treetized nagnetized Foliar applications san vit um extract ol . at 5 % ction between irri Chitosan	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g 5 ppm	0.558 0.162 ** 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.565 0.604 0.516 0.533	0.546 0.149 0.546 0.149 0.326 0.380 0.361 0.330 0.342 0.349 0.161 0.063 s and foli 0.782 0.553 0.592 0.504 0.521	308.2 275.4 304.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.7 182.2 208.7 199.8 194.1 210.8	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 ations (A) 204.7 172.2 200.8 189.8 184.1	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994	13.278 8.807 * 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426 12.654 12.069	192.15 107.08 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 1166.23	182.06 97.00 182.06 97.00 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13 204.53 177.53 184.10
Treat A) I Magne Non-n F. test B) I Chitos Lithov Seleni Yeast Contro L.S.D	ments Irrigation water treetized nagnetized Foliar applications san Vit tum extract ol at 5 % ction between irri Chitosan Lithovit	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g 5 ppm	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.565 0.604 0.572 0.533 0.576	0.546 0.149 0.483 0.326 0.380 0.361 0.330 0.342 0.349 0.394 0.161 0.063 s and foli 0.782 0.553 0.592 0.560 0.504 0.521 0.564	308.2 275.4 304.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.7 182.2 208.7 199.8 194.1 210.8 183.4	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 ations (A) 204.7 172.2 200.8 189.8 184.1 199.1	7.466 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 × B): 17.191 11.284 11.492 11.085 11.313 10.728 11.207	13.278 8.807 ** 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426 12.654 12.069 12.548	192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 166.23 187.63 149.20 178.43	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13 204.53 156.23 177.53 184.10 168.33
Treat A) I Magne Non-n F, test B) I Chitos Lithov Seleni Yeast Contro L.S.D Interace	ments rrigation water tre tized nagnetized Foliar applications san vit um extract ol . at 5 % ction between irri Chitosan Lithovit Selenium	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 500 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.565 0.604 0.572 0.516 0.533 0.616 0.533	0.546 0.149 * 0.483 0.326 0.380 0.361 0.342 0.349 0.394 0.161 0.063 0.752 0.553 0.592 0.560 0.504 0.521 0.604 0.604	308.2 275.4 304.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.2 208.7 199.8 194.1 210.8 183.4 214.7 78.40	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 204.7 172.2 200.8 189.8 184.1 199.1 173.4 237.3 68,4	7.547 0.994 11.284 11.284 11.284 11.284 11.284 11.285 11.313 10.728 11.207 13.270 9.864	13.278 8.807 ** 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426 12.654 12.069 12.548 14.611 11.205	192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 166.23 187.63 149.20 178.43 231.60 146.23	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13 204.53 156.23 177.53 184.10 168.33 221.50 136.13
Treat A) I Magne Non-ner F. test B) I Chitos Lithov Seleni Yeast Control L.S.D Interact	ments Irrigation water treetized nagnetized Foliar applications san Vit tum extract ol at 5 % ction between irri Chitosan Lithovit Selenium Yeast extract	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.565 0.604 0.572 0.516 0.533 0.576 0.604 0.247 0.201	0.546 0.149 0.546 0.149 0.326 0.380 0.361 0.330 0.342 0.349 0.161 0.063 0.782 0.553 0.592 0.592 0.504 0.521 0.564 0.604 0.235 0.185	308.2 275.4 308.2 275.4 304.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.7 182.2 208.7 199.8 194.1 210.8 183.4 214.7 78.40 405.6	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 204.7 172.2 200.8 189.8 184.1 199.1 173.4 237.3 68.4 362.2	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 * B): 17.191 11.284 11.492 11.085 11.313 10.728 11.207 13.270 9.864 9.369	13.278 8.807 * 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426 12.654 12.069 12.548 14.611 11.205 10.710	192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 166.23 187.63 149.20 178.43 231.60 146.23 130.03	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13 204.53 156.23 177.53 184.10 168.33 221.50 136.13 119.93
Treat A) I Magne Non-ner F. test B) I Chitos Lithov Seleni Yeast Control L.S.D Interact	ments Irrigation water treetized nagnetized Foliar applications san Vit tum extract bl. at 5 % ection between irri Chitosan Lithovit Selenium Yeast extract Control Chitosan	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	0.558 0.162 * 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.565 0.604 0.516 0.533 0.576 0.616 0.247 0.201 0.113 0.181	0.546 0.149 0.546 0.149 0.326 0.380 0.361 0.330 0.342 0.349 0.161 0.063 s and foli 0.782 0.553 0.592 0.564 0.521 0.564 0.604 0.235 0.185 0.099 0.168	308.2 275.4 304.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.7 182.2 208.7 199.8 194.1 210.8 183.4 214.7 78.40 405.6 368.7	283.5 283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 attions (A > 204.7 172.2 200.8 189.8 184.1 199.1 173.4 237.3 68.4 362.2 356.3 358.7	7.466 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 × B): 17.191 11.284 11.492 11.085 11.313 10.728 11.207 13.270 9.864 9.369 6.947 8.057	13.278 8.807 * 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426 12.654 12.069 12.548 14.611 11.205 10.710 8.288	192.15 107.08 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 166.23 214.63 149.20 178.43 231.60 146.23 130.03 197.43 125.43	182.06 97.00 182.06 97.00 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13 204.53 156.23 177.53 184.10 168.33 221.50 136.13 119.93 87.33 115.43
Treat A) I Magne Non-ner F. test B) I Chitos Lithov Seleni Yeast Control L.S.D Interact	ments Irrigation water treetized nagnetized Foliar applications an vit num extract ol at 5 % ction between irri Chitosan Lithovit Selenium Yeast extract Control Chitosan Lithovit	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 ppm 5 g 10 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 2 g 5 ppm 10 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 1.5 g 10 ppm 50 ppm 1.5 g 10 ppm 50 ppm 50 ppm 1.5 g 10 ppm 50 ppm	0.558 0.162 0.497 0.339 0.392 0.373 0.342 0.361 0.408 0.173 0.063 treatment 0.794 0.565 0.604 0.572 0.516 0.533 0.576 0.616 0.247 0.201 0.113 0.181 0.174	0.546 0.149 0.546 0.149 0.326 0.380 0.361 0.330 0.342 0.349 0.394 0.161 0.782 0.553 0.592 0.560 0.504 0.521 0.564 0.604 0.235 0.185 0.099 0.168 0.161	308.2 275.4 308.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.7 182.2 208.7 199.8 194.1 210.8 183.4 214.7 78.40 405.6 339.7 298.7	283.5 283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 ations (A > 204.7 172.2 200.8 189.8 184.1 173.4 237.3 68.4 362.2 356.3 358.7 336.4	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 (*B): 17.191 11.284 11.492 11.085 11.313 10.728 11.207 13.270 9.864 9.369 6.947 8.057 7.195 6.611	13.278 8.807 ** 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426 12.654 12.0548 14.611 11.205 10.710 8.288 9.398 8.536 7.952	192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 166.23 187.63 149.20 178.43 231.60 146.23 130.03 97.43 109.66 97.43	182.06 97.00 182.06 97.00 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13 204.53 156.23 177.53 184.10 168.33 221.50 136.13 119.93 87.33 115.43
Treat A) I Magne Non-ner F. test B) I Chitos Lithov Seleni Yeast Control L.S.D Interact	ments Irrigation water treetized nagnetized Foliar applications san Vit tum extract bl. at 5 % ection between irri Chitosan Lithovit Selenium Yeast extract Control Chitosan	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	0.558 0.162 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.516 0.533 0.572 0.516 0.533 0.576 0.616 0.247 0.201 0.113 0.181 0.174 0.169 0.175	0.546 0.149 ** 0.483 0.326 0.380 0.361 0.342 0.349 0.394 0.161 0.063 0.553 0.592 0.560 0.504 0.521 0.521 0.564 0.604 0.235 0.168 0.168 0.169 0.168	308.2 275.4 308.2 275.4 304.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.7 182.2 208.7 199.8 194.1 210.8 183.4 214.9 78.40 405.6 368.7 399.6 339.7 298.7 379.7	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 ations (A > 204.7 172.2 200.8 189.8 184.1 199.1 173.4 236.2 236.3 358.7 336.4 288.3 305.0	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 (*B): 17.191 11.284 11.492 11.085 11.313 10.728 11.207 13.270 9.864 9.369 6.947 8.057 7.195 6.611	13.278 8.807 * 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426 12.654 12.069 12.548 14.611 11.205 10.710 8.288 9.398 8.536 7.952 8.416	192.15 107.08 * 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 166.23 187.63 149.20 178.43 231.60 146.23 130.03 97.43 197.43 97.43	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13 204.53 156.23 177.53 184.10 168.33 221.50 136.13 119.93 87.33 115.43 99.56 87.33 87.33
Treat A) I Magne Non-ner F. test B) I Chitos Lithov Seleni Yeast Control L.S.D Interact	ments Trigation water treetized nagnetized Foliar applications an vit Tum Extract of a st 5 % or on between irri Chitosan Lithovit Selenium Yeast extract Control Chitosan Lithovit Selenium Yeast extract	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	0.558 0.162 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.565 0.604 0.572 0.516 0.533 0.576 0.616 0.247 0.201 0.113 0.181 0.174 0.169 0.175 0.145 0.199	0.546 0.149 0.546 0.149 0.326 0.380 0.361 0.330 0.342 0.349 0.161 0.063 s and foli 0.782 0.553 0.592 0.564 0.504 0.521 0.564 0.604 0.235 0.161 0.157 0.163 0.163 0.163 0.133 0.185	308.2 275.4 308.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.7 182.2 208.7 199.8 194.1 210.8 183.4 214.7 78.40 405.6 339.7 298.7 399.6 339.7 298.7 348.2	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 ations (A) 204.7 172.2 200.8 189.8 184.1 199.1 173.4 237.3 68.4 362.2 356.3 358.7 336.4 288.3 305.0 338.2	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 * B): 17.191 11.284 11.492 11.085 11.313 10.728 11.207 13.270 9.864 9.369 6.947 8.057 7.195 6.611 7.075 7.473	13.278 8.807 * 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426 12.654 12.654 12.654 12.069 12.548 14.611 11.205 10.710 8.288 9.398 8.536 7.952 8.814 10.582	192.15 107.08 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 166.23 187.63 149.20 178.43 231.60 146.23 130.03 97.43 125.43 109.66 97.43 97.43 116.13 125.66	182.06 97.00 182.06 97.00 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13 204.53 156.23 177.53 184.10 168.33 221.50 136.13 119.93 87.33 115.43 99.56 87.33 87.33 106.03 115.56
Treat A) I Magnet Non-nn F. tests B) I Chitos Lithov Seleni Yeast Contro L.S.D Interact	ments Irrigation water treetized nagnetized Foliar applications san Vit Ium extract ol at 5 % ction between irri Chitosan Lithovit Selenium Yeast extract Control Chitosan Lithovit Selenium	250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g gation water 250 ppm 500 ppm 1.5 g 2 g 5 ppm 10 ppm 5 g 10 g	0.558 0.162 ** 0.497 0.339 0.392 0.373 0.342 0.354 0.361 0.408 0.173 0.063 treatment 0.794 0.565 0.604 0.572 0.516 0.533 0.576 0.616 0.247 0.113 0.181 0.174 0.169 0.175 0.145	0.546 0.149 * 0.483 0.326 0.380 0.361 0.330 0.342 0.349 0.394 0.161 0.063 0.553 0.592 0.564 0.504 0.521 0.564 0.235 0.168 0.161 0.157 0.163 0.163 0.163	308.2 275.4 308.2 275.4 304.2 275.4 304.2 269.7 246.4 273.7 265.8 389.3 162.8 26.31 ar applica 167.7 182.2 208.7 199.8 194.1 210.8 183.4 214.9 78.40 405.6 368.7 399.6 339.7 298.7 379.7	283.5 264.2 279.8 263.1 236.2 252.1 255.8 395.6 113.0 44.07 ations (A > 204.7 172.2 200.8 189.8 184.1 199.1 173.4 236.2 236.3 358.7 336.4 288.3 305.0	2016 11.937 7.466 * 13.280 9.115 9.775 9.140 8.962 9.901 9.340 11.256 7.547 0.994 (*B): 17.191 11.284 11.492 11.085 11.313 10.728 11.207 13.270 9.864 9.369 6.947 8.057 7.195 6.611	13.278 8.807 * 14.620 10.456 11.115 10.481 10.303 10.242 10.681 12.597 8.887 0.993 18.529 12.625 12.833 12.426 12.654 12.069 12.548 14.611 11.205 10.710 8.288 9.398 8.536 7.952 8.416 8.814	192.15 107.08 187.11 131.83 170.03 137.95 142.53 145.81 147.28 178.63 105.40 5.870 244.20 166.23 214.63 149.20 178.43 231.60 146.23 130.03 97.43 125.43 109.66 97.43 97.43 116.13	182.06 97.00 * 177.01 121.73 159.98 127.90 132.43 135.71 137.18 168.53 95.30 5.864 234.10 156.13 204.53 156.23 177.53 184.10 168.33 221.50 136.13 119.93 87.33 115.43 99.56 87.33 176.03

Effects of foliar applications:

The obtained results in Tables 4 and 5 show that all foliar application treatments significantly enhanced minerals and photosynthetic pigments in tomato leaves as compared with check plants in both growing seasons. Chitosan application at the lowest concentration (250 ppm) is the superior in its effects on all studied parameters, followed by decline with the highest concentration (500 ppm) but still higher than the control except for Fe. On the other hand, Foliar application of yeast extract at 10 g/L came in the first order in enhancing Fe content followed Chitosan (250 ppm) then lithovit at 1.5 g/L in both growing seasons.

Effect of interaction between irrigation water treatments and foliar applications:

Tomato leaf minerals (N, P, K, Ca, Mg, Fe, Zn and Mn) and pigments (Ch. a, Ch. b, total chlorophyll

and carotenoids) in response to the interaction between irrigation water treatments and foliar applications are presented in Tables 4 and 5. Data indicated that the best values of all the aforementioned parameters significantly enhanced in response to irrigation with magnetized water and foliar applications (chitosan, lithovit, selenium and yeast extract) except for Fe in both seasons. The highest values of N, P, K, Ca, Mg, Zn, Mn, Chl. a, Chl. b, total chlorophyll and carotenoids were obtained specially with chitosan at 250 ppm. On the other hand, both the lowest values of the previous parameters and the best value of Fe were recorded with the control treatment (irrigation with untreated water in the absence of foliar applications) in both seasons.

Table 5. Photosynthetic pigments of tomato leaves as affected by irrigation water treatments and foliar applications during summer seasons of 2016 and 2017 after 75 days from transplanting.

applications during summer seasons of 2016 and 2017 after 75 days from transplanting.										
		Chl. (a)		Chl. (b)		Total chl. (a+b)		Carotenoids		
Treatr	nents		(mg/100gm		(mg/100g)	m F.Wt.)		gm F.Wt.)		gm F.Wt.)
			2016	2017	2016	2017	2016	2017	2016	2017
A) Irrigation water treatments:										
Magne			1.144	1.233	0.716	0.775	1.861	2.009	0.668	0.672
Non-m	agnetized		0.600	0.680	0.536	0.597	1.136	1.278	0.503	0.507
F. test			*	*	*	*	*	*		
B) Fo	liar applicati									
Chitosa	on	250 ppm	1.270	1.356	0.767	0.822	2.038	2.178	0.709	0.697
Cilitos	all	500 ppm	0.795	0.890	0.547	0.600	1.343	1.491	0.570	0.581
Lithov	it	1.5 g	0.953	1.034	0.657	0.737	1.610	1.772	0.605	0.617
Litilov	11	_ 2 g	0.858	0.944	0.600	0.659	1.458	1.603	0.557	0.569
Seleniu	ım	5 ppm	0.883	0.975	0.605	0.661	1.488	1.628	0.550	0.550
Selemi	J111	10 ppm	0.798	0.879	0.595	0.651	1.393	1.531	0.561	0.572
Vacat	~~·+~~ ~+	5 ĝ	0.793	0.873	0.622	0.685	1.415	1.559	0.575	0.587
Yeast e	extract	10 g	0.955	1.036	0.737	0.800	1.693	1.836	0.665	0.665
Contro	l	· ·	0.545	0.632	0.505	0.561	1.050	1.193	0.482	0.470
L.S.D.	at 5 %		0.024	0.030	0.062	0.064	0.075	0.081	0.045	0.045
Interac	tion between	n irrigation w	ater treatmer	nts and fo	liar applica	itions (A >	(B):			
	Chitosan	250 ppm	1.485	1.577	0.955	0.885	2.370	2.517	0.848	0.837
	Cilitosaii	500 ppm	1.075	1.185	0.704	0.620	1.695	1.857	0.637	0.648
eq	Lithovit	1 <u>.</u> 5 g	1.165	1.163	0.833	0.750	1.915	2.081	0.687	0.700
. 2	Litiiovit	2 g	1.070	1.248	0.706	0.655	1.725	1.870	0.616	0.628
<u> </u>	Selenium	5 ppm	1.145	0.243	0.724	0.670	1.815	1.958	0.637	0.625
<u>5</u> 0	Selemum	10 ppm	1.065	1.148	0.758	0.700	1.765	1.906	0.620	0.630
Magnetized	Yeast	5 g	1.135	1.216	0.736	0.685	1.820	1.952	0.628	0.640
_	extract	10 g	1.170	1.251	0.940	0.880	2.050	2.206	0.773	0.785
	Control	_	1.056	1.136	0.671	0.605	1.595	1.736	0.571	0.559
	Chitoson	250 ppm	0.990	1.078	0.657	0.650	1.706	1.840	0.570	0.558
eq	Chitosan	500 ppm	0.516	0.596	0.529	0.475	0.991	1.125	0.503	0.515
Ę	Title avrit	1.5 g	0.741	0.821	0.642	0.565	1.306	1.463	0.523	0.535
Je.	Lithovit	_ 2 g	0.646	0.726	0.611	0.545	1.191	1.337	0.498	0.510
<u> </u>	Calaniana	5 ppm	0.621	0.701	0.598	0.540	1.161	1.299	0.463	0.475
Ĕ	Selenium	10 ppm	0.531	0.611	0.544	0.490	1.021	1.155	0.503	0.515
<u>-</u>	Yeast	5 g	0.451	0.531	0.635	0.560	1.011	1.166	0.523	0.535
Non-magnetized	extract	10 g	0.741	0.821	0.646	0.595	1.336	1.467	0.558	0.546
~	Control	2	0.100	0.185	0.464	0.406	0.506	0.650	0.393	0.381
L.S.D.	at 5 %		0.034	0.42	0.090	0.088	0.107	0.115	0.064	0.064

DISCUSSION

The stimulating effect of irrigation with magnetized water may be due to improving and increasing Free-living micro-organisms population and activity in soil (Table 1), which in turn enhance root development, increase water and mineral uptake and produce plant hormones that might be responsible for better growth of tomato plants. Also, magnetic treatments enhance the activation of phytohormone and bio-enzyme systems, affects cell membranes structures and in this way increases their permeability and

ion, which then affects various metabolic pathway activities as well as increasing the rate of water absorption. Also, there are some changes occurred in the chemical and physical properties of water according to magnetic treatment, mainly hydrogen bonding, surface tension, conductivity, polarity and solubility of salts, these changes in water properties may affec plants growth (Turker *et al.*, 2007and Maheshwari and Grewal, 2009). Changing water and soil properties in response to magnetized water (Table 2) increased the availability and absorption of nutrients causing higher contents of them in plant tissue. Also,

increasing all photosynthetic pigments may be through the increase in cytokinin synthesis which induced by magnetic field (Atak *et al.*, 2003). Similar enhancing effects were obtained by Abou El-Yazied *et al.* (2012); Yusuf *et al.* (2016) and Yusuf and Ogunlela (2017) on tomato plants.

The stimulatings effect of chitosan on plant growth performance (vegetative growth parameter, leaf minerals and pigments content) may be attributed to improving uptake of water and availability of essential nutrients through adjusting cell osmotic pressure and reducing accumulating the harmful free radicals by increasing antioxidants and enzymatic activities (Guan *et al.*, 2009). Also, chitosan enhance key enzymes activity of nitrogen (N) metabolism (glutamine and nitrate reductase) and improve the transportation of nitrogen in the functional leaves as well as increase photosynthesis efficiency which in turn enhance plant growth and development (Mondal *et al.*, 2016). These results are in harmony with the findings of Borkowski *et al.* (2007); El-Tantawy (2009) and Mondal *et al.* (2016) on tomato plants.

The increment in the studied parameters that achieved with foliar application of lithovit as compared to the control may be through the role as a long term reservoir supplying plants with CO₂, so it can enhance plant growth, where elevated CO₂ concentrations generally increased carbon assimilation, photosynthesis intensity, biomass and leaf area of plants (Bilal, 2010 and Maswada and Abd El-Rahman, 2014). Also, lithovit consisting mainly of Ca (3%), Mg (2%), CaCo₃ (24%) and MgCo₃ micron (41%) which penetrate rapidly into plant tissue and play vital roles in physiological and biological processes in plants in which reflected positively on crop productivity. Similar findings were reported by Byan (2014); Moisa and Berar (2015) and recently Abd El-Nabi *et al.* (2017).

Concerning the beneficial effect of yeast extract, it is a natural source of cytokinins that stimulate cell enlargement and cell division as well as the synthesis of nucleic acid, protein, and chlorophyll pigments. In addition, yeast extract contains protective agents as sugars, proteins, amino acids, several vitamins as well as most of nutritional elements and organic compounds. The enhanced effects of foliar application of yeast extract on tomato plants were also obtained by Abou El-Yazied and Mady (2011); Abd El-Fatah *et al.* (2014) and Shabana *et al.* (2015).

Also, exogenous foliar application of Se has already shown to enhance vegetative growth and chemical constituents of leaves by Abul-Soud and Abd Elrahman (2016) on eggplant; Andrejiova *et al.* (2016) and Santos-Vázquez *et al.* (2016) on tomato plants.

REFERENCES

- Abd El-Fatah, A.M.A.; K.K. Dawa, and T.M. Al-Gazzar (2014). Effect of organic fertilizer, biofertilizer and some foliar application treatments on tomato fruit yield and quality (*Lycopersicin esculentum* Mill). M sc. Fac. Agric., Mans. Univ., Egypt.
- Abdel Nabi, H.MA.; K.K. Dawa; E.I. El-Gamily and Y.F.E. Imryed (2017). Effect of magnetic water, foliar application with nano material and nitrogen levels on productivity and quality of head lettuce. Int. J. Adv. Res. Biol. Sci., 4(5): 171-181.

- Abou El-Yazied A.; A.M. El-Gizawy; S.M. Khalf; A. El-Satar and O.A. Shalaby (2012). Effect of magnetic field treatments for seeds and irrigation water as well as N, P and K levels on productivity of tomato plants. J. App. Sci. Res., 8(4):2088-2099.
- Abou El-Yazied, A. and A.M. Mady (2011). Effect of Naphthalene Acetic Acid and Yeast Extract on Growth and Productivity of Tomato (*Lycopersicon esculentum* Mill.) Plants. Res. J. Agric. and Biol. Sci., 7(2): 271-281.
- Abul-Soud, M.A. and H. Abd-Elrahman (2016). Foliar Selenium Application to Improve the Tolerance of Eggplant Grown under Salt Stress Conditions. International J. Plant and Soil Sci., 9(1): 1-10.
- Amer, S.S.A. (2004). Growth, green pods yield and seeds yield of common bean (*Phaseolus vulgaris* L) as affected by active dry yeast, Salicylic acid and their interaction. J. Agric. Sci. Mansoura. Univ., 29(3): 1407-1422.
- Andrejiova, A.; A. Hegedusova and I. Mezeyoya (2016). Effect of genotype and selenium biofortification on content of important bioactive substances in tomato (*Lycopersicon esculentum* Mill). J. International . Sci. Publications, 4: 8-18.
- AOAC. (1990). Official Method of Analysis, 15th Ed., Association of Official Analytical Chemists, Inc., USA
- Atak, C.; O. Emiroglu; S. Aklimanoglu, and A. Rzakoulieva (2003). Stimulation of regeneration by magnetic field in soybean (*Glycin max L. Mirrill*) tissu cultures. J. cell and Molecular Biol., 2: 113-119.
- Bilal B.A. (2010). Lithovit: An innovative fertilizer. The 3rd e-Conference on Agricultural Biosciences (IeCAB 2010), 1st- 15th June 2010. http://www.slideserve.com/madison/lithovitan-innovative-fertilizer.
- Borkowski, J.; B. Dyki; A. Felczyńska and W. J. Kowalczyk (2007). Effect of biochikol 020 pc (chitosan) on the plant growth, fruit yield and healthiness of tomato plant roots and stems. J. Borkowski, B. Dyki, A. Felczyńska, W. Kowalczyk, 217-223.
- Byan, U. A.I. (2014). Influence of using some safety materials on water requirement and water use efficiency of snap bean plant. Arab Univ. J. Agric. Sci. Ain Shams Univ., Cairo, 22(2): 381-394.
- Chibu, H. and H. Shibayama (2003). Effects of chitosan application on the growth of several crops. In: Chitin and chitosan in life science. T.Uragami, K Kurita, and T. Fukamizo (eds.). Yamaguchi, Japan. pp. 235-239.
- El-Tantawy, E.M (2009). Behaviour of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pakistan J. Biol. Sci., 12:1164-1173.
- Gomez, K.A. and A.A. Gomez (1984). Statistical Procedures for the Agricultural Researches. John Wiley and Son, Inc. New York.

- Guan, Y.J.; J. Hu; X.J. Wang and C.X. Shao (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ. Sci., 10: 427-433.
- Horneck, D.A. and D. Hanson (1998). Determination of potassium and sodium by Flame Emission Spectrophotometry. In Handbook of Reference Methods for Plant Analysis, pp. 153-155.
- Jackson, M. L. (1967). Soil chemical analysis prentic hallpvt. Itd. India. PP. 398.
- Koller, H.R. (1972). Leaf area-Leaf weight relationship in soybean canopy. Crop Sci., 12:180-183.
- Maheshwari, B.L. and H.S. Grewal (2009). Magnetic treatment of irrigation water: its effect on vegetable crop yield and water productivity. Agriculture Water Management. 96: 1229-1236.
- Maswada H.F. and L.A. Abd El-Rahman (2014). Inducing salinity tolerance in wheat plants by hydrogen peroxide and lithovit "A nano-CaCO₃ fertilizer". J. Agric. Res. Kafr El-Sheikh Univ. 40 (4): 696-719.
- Moisa, R. and V. Berar (2015). Study of the effect of several natural fertilizers on the seedlings leaf area for some tomato cultivars. J. Horti. Forestry and Biotech., (2): 77-81.
- Mondal, A.M.A.; A.B. Puteh and N.C. Dafader (2016). Foliar application of chitosan improved morphophysiological attributes and yield in summer tomato (*Solanum lycopersicum*). J. Agri. Sci., 53(2): 339-344.
- Piper, C.S. (1947). "Soil and Plant Analysis". The Univ. of Adelaiada, Pp: 293-296.
- Sandell, R. (1950). Colorimetric determination of traces of metal 2nd Ed. Interscience pub., Inc. New York.

- Santos-Vázquez, M.E.; A.B. Mendoza; N.A.R. Torres; M.C. Fuente and A.M. Moreno (2016). Sodium selenite treatment of vegetable seeds and seedlings and the effect on antioxidant status. Emirates J. of Food and Agric., 28(8): 589-593.
- Seeley, H.W. and P.J. VanDemark (1981). Microbes in action. A laboratory manual of microbiology. 3rd Edition W.H Freeman and Company USA., p: 350.
- Shabana, A.I.; Ahmed, H.I.; Shafeek, M. R. and F.S. AbdEl-Al (2015). Improving productivity of tomato crop grown under high temperature condition using some safe and natural substances. Middle East J. Agric. Res., 4(1): 20-26.
- Snedecor, G.W. and W. G. Cochran (1967). "Statistical Methods". 7th ed. Lowa State Univ. Press, Ames, Lowa, U.S.A., Pp: 507.
- Turker, M., C. Temirci, P. Battal and M.E. Erez (2007). The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. Phyton Ann. Rei Bot., 46: 271-284.
- Wettestein, D. (1957). "Chlorophyll". Lethale und der Submikroskopische Formwechsel der plastiden. Exptl. Cell Reso., 12: 427-506.
- Yusuf, K.O. and A.O. Ogunelela (2017). Effects of magnetized water on the vegetative growth and yield of tomato. AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org. 19(1): 1-8
- Yusuf, K.O.; A.O. Ogunelela and M.O. Murtala (2016). Effects of magnetically treated water on germination and growth of tomato (*Lycopersicon esculentum*: variety UC82B) under poor soil fertility and deficit irrigation. J. Res. in Forestry, Wildlife and Environ., 8(4): 30-38.

استجابه نباتات الطماطم للري بالماء الممغنط وبعض معاملات الرش الورقي تحت نظام الري بالتنقيط: ١- النمو الخضري والمحتوى الكيماوي للأوراق. كوثر كامل ضوه ، حسام محمد السعيد عبد النبي و ولاء محمد السعيد سويلم قسم الخضر والزينة- كلية الزراعة- جامعة المنصورة – مصر

أجريت هذه الدراسة خلال موسمي صيف ٢٠١٦ بمزرعة خاصة بقرية صهرجت الصغرى قرب مدينة المنصورة محافظة الدقهلية بهدف دراسة تأثير الري بالماء العادي والماء الممغنط وبعض معاملات الرش الورقي (الشيتوزان الليثوفيت السيلينيوم مستخلص الخميرة) والتفاعل بينهم على النمو الخضري والمحتوى الكيماوي للأوراق لنباتات الطماطم هجين ٢١١٦. أعطت معاملة الري بالماء الممغنط أعلى القيم لصفات النمو الخضري والممثلة في ارتفاع النبات, عدد الأوراق, عدد الأفرع المساحة الورقية الوزن الطازج والجاف وكذلك المحتوى الكيماوي للأوراق مثل كلوروفيل أ, كلوروفيل ب الكلوروفيل الكلي أبر بالكاروتين النسبة المئوية للنيتروجين والفوسفور والبوتاسيوم والكالسيوم والماغنسيوم وكذلك الزنك والمنجنيز عند المقارنة بمعاملة الري بالماء العادي أعلى قيمة لمحتوى الأوراق من عنصر الحديد في موسمي الزراعة أدت جميع معاملات الرش الورقي الى زيادة معنوية في جميع الصفات المدروسة عند المقارنة بمعاملة المشيتوزان (٢٠٠ جزء بالمليون) في المرتبة الأولى ثم الرش بالشيتوزان (١٠٠ جزام/لتر) في المرتبة الثائثة. كانت أفضل بمستخلص الخميرة (١٠ جرام/لتر) في المرتبة الثانية ثم الرش بالليثوفيت (١٥ جرام/لتر) في المرتبة الثائثة. كانت أفضل الرش الورقي خاصة الشيتوزان بتركيز ٢٠٠ جزء بالمليون في موسمي الدراسة ماعدا محتوى الأوراق من الحديد حيث الرش الورقي خاصة الشيتوزان بتركيز ٢٠٠ جزء بالمليون في موسمي الدراسة ماعدا محتوى الأوراق من الحديد حيث الرش الورقي خاصة الشيتوزان بتركيز ٢٠٠ جزء بالمليون في موسمي الدراسة ماعدا محتوى الأوراق من الحديد حيث الرش ألورقي خاصة الشيتوزان بتركيز ٢٠٠ جزء بالمليون في موسمي الدراسة مع الري بالماء العادى.