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ABSTRACT 

     In this paper, the conjugate conduction-free convection heat transfer from a horizontal cylinder is 

numerically and experimentally investigated. In the theoretical study, the unsteady two-dimensional conduction 

equation for the cylindrical wall and the unsteady laminar two-dimensional governing equations for the flowing 

fluid are solved simultaneously using the finite-difference method. The effects of controlling parameters, such as 

Rayleigh number, thermal conductivity ratio and diameter ratio on heat transfer process have been investigated. 

The study has shown that the heat transfer rate increases with increasing Rayleigh number and thermal 

conductivity ratio. The study has also discussed the existence of critical radius for some Rayleigh numbers and 

thermal conductivity ratios. The streamlines and isotherms are plotted for some cases to show the details of the 

velocity and thermal fields. For verification of the numerical model, the present numerical results are compared 

with previously published experimental and theoretical data where good agreements were found. In the 

experimental study, the heat transfer from a hollow horizontal aluminum cylinder with diameter ratio of 2 and 

heated from its inner surface at constant temperature is investigated. The obtained experimental results are used 

to further assess the validity of the numerical results and acceptable agreement has been found. 

 

حل هعادلت الطاله حن  فً الذساست الٌظشيت .هعوليا  ًظشيا و أفميتة بالخىصيل والحول الحش هعا هي اسطىاًت فً هزا البحث حن دساست اًخمال الحشاس

أثيش خلال جذاس الاسطىاًه والوائع الزي حىله وهعادلاث الحشكت فً بعذيي وهع الزهي فً ولج واحذ بأسخخذام طشيمت الفشق الوحذود. حن دساست ح

ذل أًخمال الحشاسة يزيذ وًسبت الخىصيل الحشاسي وًسبت الالطاس علً اًخمال الحشاسة. ولذ أظهشث الذساست أى هع ًحاكوت وهً سلن سايلالعىاهل ال

ً وًسبت طش الحشج لبعض المين هي سلن سايلوجىد ًصف الم الذساست أيضا ولذ أوضحجوًسبت الخىصيل الحشاسي.  ًادة كل هي سلن سايلبزي

اسة. السشعه ودسجاث الحش هجالاثاب لبعض الحالاث لخىضيح حفاصيل الخىصيل الحشاسي. حن سسن هٌحٌياث ثبىث دسجاث الحشاسة والاًسي

عوليت وفً الذساست ال عوليت والٌظشيت الخً حن ًششها هسبما ووجذث أًها هخىافمت.ووللخحمك هي الٌوىرج الشياضً حوج هماسًت الٌخائج الحاليت بالٌخائج ال

. حن سجت الحشاسةحسخي هي سطحها الذاخلً هع ثبىث د 2حن دساست اًخمال الحشاسة هي اسطىاًت افميت هصٌىعت هي الألىهٌيىم راث ًسبت ألطاس 

 حىافك همبىل. اكاى بيٌهوو لٌظشيتعوليت لزيادة الخحمك هي الذساست اواجشاء الذساست ال
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1. Introduction 

    Conjugate heat transfer refers to the heat transfer 

processes involving an interaction of conduction in a 

solid body and convection in the fluid surrounding it. 

The condition of continuity in temperature and heat 

flux has to be fulfilled at the solid-fluid interface. 

Conjugate heat transfer occurs in many important 

engineering devices such as heat exchangers, power 

plants, cooling of electrical and electronic 

equipments, pipe insulation systems, etc. Therefore 

the effect of wall conduction become very important 

in convection heat and must be taken into account. 

The conjugate heat transfer problem in which the 

coupled heat transfer by conduction in the solid wall 

and by convection in the fluid should be determined 

simultaneously. 

    Most of the previous studies have considered the 

heat convection from an isothermal horizontal 

circular cylinder. These studies were conducted 

either theoretically [4-10 and 15-17] or 

experimentally [4, 7, 11-14 and 16] or from empirical 

correlation [1-3]. 

    Regarding conjugate conduction-free convection 

heat transfer from a horizontal cylinder few 

investigations were found in the literature. Sparrow 

and Kang [18] numerically investigated two-

dimensional natural convection heat transfer from 

insulated horizontal cylinder. They found that the use 

of Morgan [1] correlation gave the most accurate set 

of one dimensional results. In addition they reported 

that the standard critical radius criterion led to 

significant errors and should no longer be used. 

Moreover, they proposed the calculation of critical 

radius from the relation horcr/kins=3n/(1+n) where n is 

the exponent of Rayleigh number in Nu=cRa
n
 

correlation. Haldar [19] investigated numerically the 

conjugate heat transfer from a horizontal insulated 

cylinder. The study evaluated the heat losses from a 
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horizontal cylinder maintained at uniform 

temperature and covered with a layer of insulation in 

the range of Grashof number from 10
2
 to 10

6
 while 

keeping Prandtl number constant at Pr=0.7 and 

conductivity ratio (air/insulation) at 0.75 and at 

different insulation thicknesses. Yamamoto et al. [20] 

presented a numerical investigation to study the 

natural convection around a horizontal circular pipe 

coupled with heat conduction in the solid structure 

using a preconditioning method for solving 

incompressible and compressible Navier-Stokes 

equations. They studied the effect of heat 

conductivity of the pipe on natural convection. Ait 

Saada et al. [21] investigated natural convection from 

a horizontal cylinder with a porous or fibrous 

coating. It is indicated that porous or fibrous material 

may also be used as a heat transfer augmentation 

technique in case of selecting porous media with 

permeability and/or high effective thermal 

conductivity. Atayilmaz and Teke [22] investigated 

experimentally and numerically the natural 

convection from a horizontal cylinder with a textile 

coating. Heat transfer rates from bare and wrapped 

horizontal cylinders were compared and heat transfer 

enhancement was observed. Atayilmaz et al. [23] 

studied theoretically the problem of the natural 

convection heat transfer from an insulated horizontal 

cylinder. They investigated the effects
 
of variable 

heat transfer coefficient on determining the critical 

radius while keeping the thermal conductivity of the 

insulation as constant. The
 
study further calculated 

the variation of the total heat transfer from the 

cylinder surface as a result of variation in insulation 

thickness. It was found that the
 
standard critical 

radius criterion led to significant errors compared to
 

numerical results. 

    The classical critical radius criterion was upgraded 

in Sparrow [24] to account for the dependence of 

average heat transfer coefficient on the outer radius 

and on the surface to ambient temperature difference 

for situations where the average Nusselt number 

varies as a power of the Rayleigh number. Other 

(1976 and 1978) modifications of the critical radius 

have taken account of radiative heat transfer [25-27]. 

Balmer [26] theoretically formulated the critical 

radius for cylinder and sphere in case of variable 

convection heat transfer coefficient. They used 

Churchill and Chu's [3] correlation in order to 

develop the critical radius equation for horizontal 

cylinder. Kulkarni [27] formulated the critical radius 

for cylinder and sphere in case of constant convective 

heat transfer coefficient and neglecting the radiative 

heat transfer. The study defined a new term "cross 

over point" as a radius greater than the critical radius 

such that the heat transfer with the corresponding 

amount of insulating material is equal to that of the 

bare thermal system. It is pointed out that the cross 

over insulation radius is applicable when the Biot 

number (hri/kins) is less than 1 in a cylindrical system. 

     The objective of this work is to study numerically 

and experimentally the effect of various controlling 

parameters on heat transfer characteristics in case of 

conjugate conduction-free convection heat transfer 

from a horizontal cylinder placed in an unbounded 

fluid. The governing differential equations for the 

cylinder wall and adjacent flowing fluid are 

simultaneously solved by satisfying the continuity of 

the heat flux and the temperature at the interface 

using a finite-difference scheme. 

 

2. Theoretical study 

 

2.1 Problem statement and governing equations 

     The physical system to be considered is as shown 

in Fig. 1, consisting of a horizontal circular cylinder 

of infinite length and inner radius (ri) and outer 

radius (ro) placed in a quiescent fluid at temperature 

T∞. The cylinder is heated from its inner surface at a 

constant temperature (Ti). The cylinder is considered 

to be long enough such that the end effects can be 

neglected and the flow can be assumed two 

dimensional. The radiation and viscous dissipation 

effects are neglected and the temperature difference 

is assumed to have a negligible effect on the fluid 

properties except for the density in the buoyancy 

force term in the momentum equation. 

    Using polar cylindrical coordinate system, the 

governing differential equations of fluid motion and 

energy for flow and cylinder wall can be written in 

term of stream function ψ′, vorticity Ω′, and 

temperature T as: 
- For the cylinder wall (ri ≤ r′ ≤ ro), the energy 

equation is reduced to: 

            2T
T

w





 


                                       (1) 

- In the fluid region (ro ≤ r′ ≤ r∞): 
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Where;             
2 2
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  
   

   
   

Fr′ and Fθ are the radial and angular components of 

the buoyancy force respectively and are defined as: 

Fr′ = ρf g β (T-T∞) cos θ,   Fθ = − ρf g β (T-T∞) sin θ 
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The velocity components Vr′ and Vθ′ are related to ψ′ 

as: Vr′ = 1/r′ ∂ψ′ / ∂θ,    Vθ′ = − ∂ψ′ / ∂r′     

    The hydrodynamic boundary conditions are based 

on the no slip conditions at the wall-fluid interface 

and the stagnant fluid far away. While the thermal 

boundary conditions are the constant temperature of 

inner surface of the cylinder and the continuity of the 

heat flux and temperature at the interface. These 

boundary conditions can be expressed as: 

   at        r′ = ri        T = Ti 

   at        r′ = ro     Vr′ =  Vθ′ = ψ′ = 0,  2    ,  

                        (− kw ∂T / ∂r′)w.= (kf ∂T / ∂r′)f  

   at      r′ → r∞    Vr′ =  Vθ′ = Ω′ = 0,   T = T∞ 

The conditions on the line of symmetry θ=0 and π 

can be expressed as  

      Vθ′ = ∂ Vr′ / ∂θ = ψ′ = Ω′ = ∂ T / ∂θ = 0 

Introducing the following dimensionless quantities 

and using modified polar coordinates (ξ,θ), ξ=ln r'/ri   

r = r′ / ri , Vr = Vr′ ri / αf ,         Vθ = Vθ′ ri / αf , 

ψ = ψ′ / αf ,       Ω = − Ω′ ri
2 
/ αf ,       t = τ αf / ri

2
   

and               = (T − T∞) / (Ti − T∞) 
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                    Fig.1 Coordinate system. 

 

The governing equations can be written as:    

- For the cylinder wall (0 ≤ ξ ≤ ξo): 

        
2 2

2

2 2
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                           (5) 

- For the fluid region (ξo ≤ ξ ≤ ξ∞): 
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where, αR = αw / αf is the thermal diffusivity ratio, Pr 

= ν/αf is the Prandtl number, Ra=gβ(Ti-T∞)(2ri)
3
Pr/ν

2
 

is the Rayleigh number. 

The dimensionless velocity components Vr and Vθ 

are now defined as: Vr = e
−ξ

 ∂ψ/∂θ,  Vθ = − e
−ξ

 ∂ψ/∂ξ 

    In terms of the new variables, the boundary 

conditions can be written as 

at  ξ = 0             = 1 

at  ξ = ξo     Vr = Vθ = ψ =  0,  Ω = e
−2ξ

 ∂
2
ψ / ∂

2
ξ, 

            (KR ∂ / ∂ξ )w = (∂ / ∂ξ )f 

at   ξ→∞    e
−ξ

 ∂ψ / ∂θ = − e
−ξ

 ∂ψ / ∂ξ = Ω = = 0 

On the line of symmetry, 

Vθ = ∂Vr / ∂θ = ψ = Ω = ∂ / ∂θ = 0 

where, KR = kw / kf  is the thermal conductivity ratio. 

     Initial conditions (at t=0) 

         ψ = Ω =0    at     ξo < ξ < ∞     

and    = 0          at     0 < ξ < ∞     

2.2 Method of solution 
     The set of governing partial differential equations 

(5)-(8) with the corresponding boundary conditions 

are discretized by using the implicit finite-difference 

method. The first-order, backward difference is 

applied to descretize the time derivative while a 

second-order, central differences is used to descretize 

the spatial derivatives (ξ,θ). The set of obtained 

algebraic equations forming a tri-diagonal system of 

equations are iteratively solved by TDMA (Tri-

Diagonal Matrix Algorithm) [28]. The acceptable 

value of variables is obtained when the error is equal 

to or less than certain prescribed error, i.e. 

              | φ
m+1

 (ξ,θ,t) − φ
m
 (ξ,θ,t) | ≤ 10

-4
  

where φ represents the functions , ψ and Ω and the 

superscript m denotes the iteration order. 

The number of nodes in the θ direction is taken as 

180 with a step size taken as 1 degree and the 

number of nodes in the ξ direction is 120 with a step 

size of 0.1. This sets the outer boundary at a physical 

distance of approximately 20,000 times the inner 

radius of the cylinder. Such large distance is 

necessary to ensure that the conditions at infinity are 

appropriately incorporated in the numerical solution. 

However, the step size in the ξ direction is reduced to 

0.05 for cases the high Rayleigh numbers. This is 

due to steep variation of velocity and temperature 

within the thin boundary-layer in these cases. 

Following the start of fluid motion, very small time 

steps are used since the time variation of vorticity 

and temperature is quite fast. As time increases, the 

time step is gradually increased. For the sake of 

stability, smaller time steps are used for high 

Rayleigh numbers. 

    Solving the dimensionless form of governing 

equations for ,  and , the details of flow and 
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thermal fields can be determined. The dimensionless 

local heat fluxes (Nu) at inner and outer surfaces of 

the cylinder are defined as: 

(2 )

( )

i i
i

f i

q r
Nu

k T T




,        
(2 )
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o o
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f i
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Where qi and qo are the local heat fluxes at inner and 

outer surfaces of the cylinder and are defined as: 

i
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Using the dimensionless temperature  together with 

the above definitions, one can easily deduce 
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The dimensionless total heat transfer rate is defined 

as:               
0

1 




  Nu dNu  

It should be noted that the above definition of 

dimensionless local heat flux at outer surface of the 

cylinder is the same as the definition of local Nusselt 

number while the definition of dimensionless total 

heat transfer rate is the same as the definition of 

average Nusselt number. Another form for 

dimensionless total heat transfer rate at steady-state 

condition.        
( )w Ri

Q
Nu

K T T K






 

where, Q is the total rate of heat transfer per unit 

length of the cylinder. In the steady-state condition 

the heat transferred to the cylinder from inner surface 

is equal to that dissipated from the outer surface. 

   
2.3 Theoretical results and discussion 

       In order to ascertain the validity of the 

mathematical model as well as the numerical 

technique, the problem of natural convection from an 

isothermal solid cylinder is first studied and the 

obtained results are compared with the numerical and 

experimental results available in the literature. The 

values of the steady average Nusselt number at 

different Rayleigh numbers and at Pr=0.7 are 

compared with previous works, displayed in Table 1, 

which shows a good agreement. Figure 2 shows a 

comparison at Rayleigh number (Ra=10
5
) between 

the present results and the experimental and 

numerical results obtained by Kuehn and Goldstein 

[4] and the data obtained by Saitoh et al. [8]. The 

figure shows a good agreement with both references. 

Figure 3 indicates a comparison between present 

numerical temperature contours and the experimental 

results reported in Kuehn and Goldstein [4] for air at 

Ra=10
5
 and a very good agreement can be observed. 

 

     In the following subsections the effect of the 

controlling parameters on the temperature profiles 

and heat transfer at thermal diffusivity ratio of 4 is 

investigated. The heat is transferred from inner 

surface of the cylinder to outer surface by conduction 

and then dissipated to surrounding by convection.     

Figure 4, which represents the time development 

of Nu  along inner and outer walls at Ra=10
3
, Pr=0.7, 

do/di=2 and KR =4. The figure shows that the rate of 

total heat rejected (in terms of Nuo
) from the outer 

wall increases with time, while that pumped into the 

cylinder through the inner wall (in terms of Nu
i

) 

decreases until they become almost equal at the 

steady-state. 

 

Table 1. Comparison between present steady values 

of Nu with published results. 

 

Ra 
Nu  

Present 

study 

Ref. 

[21] 

Ref. 

[4] 

Ref. 

[1] 

10
3 

3.016 2.9754 3.09 3.11 

10
4 

4.85 4.7638 4.94 4.80 

10
5 

7.996 7.8897 8.00 8.54 
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Fig. 2. Comparison between present results for Nu 

with previous numerical and experimental results. 

 

                

  

 

 

 

 

 

 

Fig. 3. Comparison of present temperature contours 

(left) with previous experimental results (right) of 

Ref.[4] for air, Pr=0.7, Ra=10
5
.  

 

2.3.1 Effect of Rayleigh number (Ra) 

         The effect of Rayleigh number on heat transfer 

is studied up to 10
5
. Figure 5 shows the time 

variation of  
oNu  at Pr=0.7, do/di=2 and KR=4 for 
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different values of Ra. The figure illustrates that the 

total rate of heat transfer (in terms of
oNu ) is initially 

low due to low temperature gradient near the outer 

surface. As the time goes considerable increase of 

heat transfer rate occurs due to the heat conduction 

through the cylinder wall. After that the heat transfer 

rate decreases due to increase of thickness of thermal 

layer near the surface till reaching a minimum at a 

certain time. Beyond this time, the buoyancy force 

starts developing, causing the fluid to set in motion 

and hence transition from conduction dominated 

mode to the convection dominated mode takes place. 

The transition from conduction to convection for this 

case takes the form of an overshoot. At later times, 

the buoyancy force effect dominates and heat transfer 

rate gradually approaches its final steady value. The 

time needed to reach steady-state depends on Ra. The 

higher the Rayleigh number the faster and stronger 

the effect of convection and hence the higher the 

value of total rate of heat transfer and the smaller the 

time needed to reach steady-state.  

    The steady-state local heat flux (in terms of Nu), 

temperature ( ) distributions at the outer surface are 

shown in Figs. 6 and 7, respectively for Pr=0.7, 

do/di=2 and KR=4 and different values of Ra. As can 

be seen in Fig. 6, for all Ra, the maximum heat flux 

occurs at the bottom of the cylinder (θ=180°) due to 

high temperature gradient. The heat flux decreases 

monotonically with θ and attains a minimum at the 

top (θ=0°). This variation in local heat flux reflects 

the local distribution of temperature, which takes its 

smallest value at the bottom (θ=180°) and increases 

monotonically with θ and attains a maximum at the 

top (θ=0°) as shown in Fig. 7. 

     Figures 8(a) and (b) show the steady-state 

calculated streamlines (left) and isotherms (right) 

patterns at Pr=0.7, d0/di=2 and KR=4 for the cases of 

Ra=10
3 
and 10

4
. Since the flow and thermal fields are 

symmetric about θ=0, only one-half of the field is 

shown. The isotherms patterns show the temperature 

around the cylinder and in the wall of the cylinder. In 

the two figures the surrounding fluid around the 

cylinder is heated, and a thermal boundary-layer and 

a thermal plume are formed. The isotherms move 

upward at the top of the cylinder (region of the 

plume) while continue adhering to it at the bottom. 

On the other hand, temperature distributions are 

observed between the inner wall and the outer 

surface of the cylinder in every case. Temperature 

contours around and in the wall of the cylinder are 

connected at the outer surface. The upper face of the 

cylinder tends to be more heated than the other 

region, because of heat released from the cylinder 

due to convection. The thermal energy in the wall of 

the cylinder is transferred to the surrounding fluid 

through the cylinder surface. Since the buoyancy 

effect induces a thermal plume upon the cylinder, 

larger convection in the plume provides higher heat 

removal from the cylinder. These figures show the 

obvious fact that the boundary layer becomes thin 

with increasing Ra and higher heat removal occurs 

when a higher Ra is considered.  
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Fig. 4. The time variation of the average Nu of inner 

and outer surfaces of the cylinder at Ra=10
3
, Pr=0.7, 

do/di=2 and KR=4. 
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Fig. 5. The time variation of the average Nu of the 

outer surface for different values of Ra.            
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Fig. 6. Distribution of the steady Nu along the outer 

surface for different Ra. 
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Fig. 7. Distribution of the steady local temperature of 

the outer surface for different Ra. 
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Fig. 8. Computed streamlines and isotherms for 

Pr=0.7, d0/di=2 and KR=4 at:  (a) Ra=10
3
, (b) Ra=10

4 
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Fig. 9 Distribution of the steady temperature with 

radius along θ=0 for different Ra. 

 

     Figure 9 shows the calculated temperature 

distribution along radial direction at θ=0 for different 

values of Ra. Since the temperature on the outer 

surface of the cylinder decreases according to the 

increase in Rayleigh number, as shown in Fig. 7, the 

temperature distributions along radial direction at 

θ=0 is also influenced by the temperature on the 

outer surface of the cylinder. 

 

2.3.2 Effect of diameter ratio (do/di)  

         Due to the relatively small heat transfer 

coefficients in natural convection, the external 

convective resistance is high relative to the 

conductive resistance in the case of low thermal 

conductivity ratio (cylinder wall is insulation) the 

critical radius usually exists. Figures 10 and 11 have 

been prepared to compare the heat transfer data from 

the present study with the numerical results of 

Sparrow and Kang [18] at Pr=0.7 and KR=2 for 

Ra=20 and 1000. This comparison provides a further 

check for the accuracy of the present numerical 

computational scheme and confirms consistency with 

the findings of Sparrow and Kang [18].  
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Fig. 10. The steady rate of heat transfer distribution 

with do/di at Ra=20, Pr=0.7, KR=2. 
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Fig. 11. Variation of the steady rate of heat transfer 

with do/di at Ra=10
3
, Pr=0.7, KR=2. 

 

     Figures 10-16 indicate the variation of the 

dimensionless steady rate of heat transfer from the 

cylinder (Q/Kw(Ti-T∞)) with the diameter ratio 

(do/di). Figures 10-12 are made for KR=2, with 
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Ra=20, 10
2
 and 10

3
, while Figs. 13-15 are made for 

KR=4 and for the same values of Ra. Figure 16 is 

done for KR=100, 500 at Ra=10
3
. In this regard, it 

may be noted that if there is a maximum at which the 

slop of the curve is horizontal, that maximum 

corresponds to the critical radius of the insulation. In 

figures 10, 13-15, all of the curves display a critical 

radius. At radius less than critical radius, the 

convective resistance decreases and the conductive 

resistance increases but the total resistance decreases 

and the heat rate therefore increases with the addition 

of insulation. This trend continues until the outer 

radius of the insulation corresponds to the critical 

radius. The trend is desirable for electrical current 

flow through a wire, since the addition of electrical 

insulation would aid in transferring heat dissipated in 

the wire to the surroundings. Conversely, at radius 

greater than critical radius, any addition of insulation 

would increase the conductive resistance and 

decrease the convective resistance but the total 

resistance increases and therefore decreases the heat 

rate. This behavior would be desirable for stream 

flow through a pipe, where insulation is added to 

reduce heat loss to the surroundings. 
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Fig. 12. Variation of the steady rate of heat transfer 

with do/di at Ra=10
2
, Pr=0.7, KR=2. 

 

     In Figs. 11 and 12, no critical radii are displayed 

since for the relatively low Kw value implied by 

Kw/Kf=2, the external convective resistance 

associated with Ra=10
2
 and 10

3
 are too small to 

trigger the conduction-convection competition 

needed for the attainment of the critical radius. In 

Fig. 16, the heat rate increases with the increase of 

do/di due to the relatively high thermal conductivity 

of the wall (KR=100 and 500), thereby the conductive 

resistance increases with do/di while the convective 

resistance decreases but the total resistance decreases 

which increases the heat rate continuously with do/di. 

From all Figures, the critical radius is a strong 

function of the thermal conductivity ratio (KR) where 

the critical radius increases (at same Ra) as KR 

increases. The increase reflects the tendency toward 

diminished conductive resistance at larger KR and the 

greater thickness of insulation that counteracts this 

tendency. 
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Fig. 13. Variation of the steady rate of heat transfer 

with do/di at Ra=20, Pr=0.7, KR=4. 
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Fig. 14. Variation of the steady rate of heat transfer 

with do/di at Ra=10
3
, Pr=0.7, KR=4. 
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Fig. 15. Variation of the steady rate of heat transfer 

with do/di at Ra=10
2
, Pr=0.7, KR=4. 
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2.3.3 Effect of thermal conductivity ratio (KR) 

         The effect of thermal conductivity ratio on heat 

transfer is studied at 2, 4, 100 and 500 for Ra=10
3
, 

Pr=0.7 and do/di=2. Figure 17 shows the steady local 

Nu distribution along the outer surface of the 

cylinder for the four values of KR. The local Nu 

distributions are influenced by the temperature on the 

outer surface as can be observed in Fig.18. A lower 

temperature on the outer surface due to lower heat 

conductivity of the cylinder wall results in a lower 

Nu (or heat flux). It can be also inferred from Fig. 17 

that the steady heat transfer rate from the outer 

surface (represented by area under curve) of the 

cylinder increases as KR increases as a result of 

increasing the temperature at outer surface. The 

distribution of the steady local temperature on outer 

surface of the cylinder for the four values of KR 

presented in Fig. 18 shows that the temperature at 

outer surface is increased as KR increases due to the 

increase of heat conduction in the cylinder wall. 
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Fig. 16. Variation of the steady rate of heat transfer 

with do/di at Ra=10
3
, Pr=0.7, KR=100, 500. 
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Fig. 17. Distribution of the steady Nu along the outer 

surface for different KR. 

 

     Figure 19 Shows the calculated radial temperature 

distribution along θ=0 for different values of thermal 

conductivity ratio. The temperature on the outer 

surface of the cylinder increases due to the increase 

of KR. Moreover, the temperature distributions along 

θ=0 are also influenced by the temperature on the 

outer surface of the cylinder. From this figure one 

can say that the higher heat conduction occurs when 

a higher heat conductivity of the cylinder wall is 

specified. 

0 30 60 90 120 150 180



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1




KR=2

KR=4

KR=100

KR=500

Ra=103, Pr=0.7
      do/di=2

 
Fig. 18. Distribution of the steady local temperature 

on outer surface of the cylinder for different KR. 
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Fig. 19. Distribution of the steady temperature with r 

at θ=0 for different KR. 

      

3. Experimental study 

    The objective of the experimental work is to study 

the effect of Rayleigh number on the heat transfer 

from the horizontal cylindrical tube, taking into 

account the thickness of the cylinder. 

 

3.1 Experimental apparatus 

      The experimental apparatus used is shown 

diagrammatically in Fig. 20. It consists essentially of 

a hollow horizontal circular cylinder (test section) 

rested on a stand to lift it away from the ground level. 

The cylinder made from aluminum material of 400 

mm length and with 30 mm and 60 mm inside and 

outside diameters respectively. An electric heater of 
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500 Watt is centered inside the cylinder to maintain 

the required uniform surface temperature. Four 

thermocouples mounted in the axial direction of the 

inner surface of the cylinder to measure the axial

temperature. At the mid length of cylinder, four 

notches were formed in circumferential direction 

with 60° apart at angles of 0º, 60º, 120º, and 180º. 

Four thermocouples are buried and brazed in these 

notches on the outer surface and another four 

thermocouples are placed in these notches at a 

distance (δ) of 2.5 mm from the outer surface of 

cylinder as shown in Fig. 21. T-type thermocouples 

calibrated with reference thermometer were used. 

The cylinder can turn around its axis of symmetry to 

measure the circumferential temperature every 30°. 

The readings of the thermocouples were taken by 

means of a pre-calibrated digital temperature reader. 

The ambient air temperature was measured by a 

mercury-in-glass thermometer. To minimize the end 

losses, two pieces of insulating material made of 

glass wool are placed on the cylinder endpoints. The 

input electric power to the heater was controlled by 

AC voltage regulator (variac), the electric power is 

disconnected from the heater automatically by the 

temperature controller device when the required 

temperature on the inner surface of cylinder is 

reached. The experiments were conducted in a closed 

room (3000×2500×3000 mm) to prevent air currents 

and allow the air to circulate freely around the 

cylinder. 

 

3.2 Experimental procedure 

      The ambient temperature in the closed room was 

fixed at T∞ = 32 °C. Input power was controlled by 

AC variac for the desired temperature at inner 

surface of cylinder. The thermocouples of the inner 

surface in the axial direction and the thermocouples 

of the outer surface and at a distance of 2.5 mm from 

the outer surface in the circumferential direction (mid 

length of cylinder) are used for measuring the inner 

surface and circumferential temperatures 

respectively. The steady-state condition is considered 

when variation of all temperatures especially the 

inner surface temperature stays in the range of ± 0.1-

0.2 °C for 20 minutes. The steady-state condition for 

each experiment was achieved after 2.5-3 hours 

approximately. When the steady-state condition was 

established, the readings of all thermocouples were 

recorded. The experiments were repeated by 

increasing the inner surface temperature where the 

temperature difference between the inner surface of 

the cylinder and the ambient (ΔT = Ti - T∞) is varied 

from 10 °C to 41.9 °C for each experiment. 

 

3.3 Evaluation of the measurements 
      The dimensional analysis generally shows that 

natural convection heat transfer from horizontal 

cylinders depends on Rayleigh numbers (Ra) and 

Prandtl numbers (Pr). The readings of the measuring 

instruments are used to estimate the values of the 

temperatures and the calculated parameters as 

follows: 

      
3

i i

2

g  (T  - T ) (2r )
Ra = Pr





  

The air thermo physical properties (Pr, υ, β) were 

evaluated at the mean film temperature (Tf) where   

Tf = (Ti + T∞) / 2, β = 1 / (Tf + 273), Ref. [29]. 

Table 2 shows the values of the Rayleigh numbers 

corresponding to the values of the temperature 

differences (ΔT= Ti - T∞). 

The local heat flux (q) at the outer surface of the 

cylinder can be calculated as follow; 

           
o

o o
o f r f

T TT
q k k

r




 

  


 

To+δ – To is the temperature difference across the 

distance (δ) see Fig. 21.  

The dimensionless local heat flux (Nusselt number 

Nu) at outer surface of the cylinder is defined as 

(2 ) (2 )

( ) ( )

o o o o o
o

f i i

q r r T T
Nu

k T T T T






 


 

 
 

 

3.4 Uncertainty analysis 

      Generally, the accuracy of the experimental 

results depends upon the accuracy of the individual 

measuring instruments and the manufacturing 

accuracy of the cylinder tube. Amongst many error 

analysis methods, uncertainty analysis method which 

is firstly proposed by Kline and McClintock [30] is 

the most widely used for experimental studies. The 

independent variables that may cause error in the 

experiments are length measurements, cylinder 

surfaces and environment temperatures. The 

uncertainty for length measurements are ±0.05 mm, 

±0.05 °C for cylinder surfaces temperatures and ±0.5 

°C for ambient air temperature. The maximum 

uncertainties of the Ra and oNu  calculated from the 

correlation of Kline and McClintock [30] are 

±1.923% and ±2.351% respectively. 

 

3.5 Experimental results  
      Figures 22 and 23 illustrate the effect of the 

Rayleigh number on the local heat flux (in terms of 

Nuo) and temperature at the outer surface of the 

cylinder. Rayleigh number was varied by increasing 

the temperature difference between the inner surface 

of the cylinder and the ambient air. It can be seen that 

increasing of Ra increases the temperature and the 

local heat flux as mentioned in the theoretical study. 

Since the thermal conductivity of the cylinder is high, 

the variation in the temperature on the outer surface 
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is small at any value of the Rayleigh number. Though 

the trend of this variation is similar to that obtained 

in the numerical results as shown in Fig. 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Schematic diagram of the experimental apparatus 

(1) test cylinder; (2) heater; (3) insulating material made of glass wool; (4) thermocouples in the inner surface of 

the cylinder (4 pieces) ; (5) thermocouples in circumferential direction of the outer surface of the cylinder (8 

pieces); (6) temperature controller device; (7) digital temperature reader; (8) voltage regulator (variac); (9) stand; 

(10) AC power supply. 

 

Table 2. The values of Rayleigh numbers corresponding to the values of temperatures differences. 

∆T(°C) 10 15 20 30 41.9 

Ra 2.39×10
4 

3.58×10
4 

4.77×10
4 

7.16×10
4 

1×10
5 
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Fig. 22. Distribution of the Nuo along the outer 

surface for different Ra. 

 

     In order to further assess the numerical results 

some comparisons with the present experimental data 

are presented in Table 3 and Fig. 24. Table 3 shows 

the values of steady oNu  at different Ra and 

comparison with theoretical results.  Figure 24 shows 

a comparison between experimental and theoretical 

results for distribution of the local Nu along the outer 

surface at Ra=10
5
. The comparisons show a 

reasonable agreement. 
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Fig. 23. Distribution of the local temperature of the outer 

surface at different Ra. 
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Fig. 21. Distribution of the 

thermocouples in the 

circumferential direction. 
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4. Conclusions 

     The problem of conjugate conduction-free 

convection heat transfer analysis from a horizontal 

cylinder is investigated. The effects of controlling 

parameters (Ra, do/di and KR) on heat transfer are 

studied. The steady-state heat transfer rate increases  
Table 3. The experimental values of steady oNu  and 

comparison with theoretical results. 

Ra ( .)oNu Exp  ( .)oNu Theor  

2.39×10
4
 8.863 9.34 

3.58×10
4
 9.737 — 

4.77×10
4
 10.529 11.045 

7.16×10
4
 11.646 — 

1.0×10
5
 12.677 13.26 
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Fig. 24. Comparison of experimental and theoretical 

local Nuo at Ra=10
5
 

 

with increasing both, the Rayleigh number and 

thermal conductivity ratio. Results for the critical 

radius were also obtained at some values of Ra and 

KR. The critical radius was found to be sensitive to 

both the Rayleigh number and the thermal 

conductivity ratio. The streamlines and isotherms are 

plotted for some of cases to show the details of the 

velocity and thermal fields. Experimentally 

determined heat fluxes with different values of Ra 

agree with the present numerical results. 
 
Nomenclature 

ri , ro      inner and outer radii of cylinder 

di , do     inner and outer diameters of cylinder 

g            gravitational acceleration 

T            temperature 

r             dimensionless radial coordinate (=r′/ri) 

t             dimensionless time (=τ αf/ri
2
) 

k            thermal conductivity 

KR          thermal conductivity ratio (=kw/kf ) 

Pr           Prandtl number (= ν / αf ) 

Ra          Rayleigh number (=gβ(Ti-T∞)(2ri)
3
Pr/ ν

2
) 

q             heat flux 

Nu          dimensionless local heat flux 

Nu         dimensionless total heat transfer rate  

Q            heat transfer rate per unit length  

Vr, Vθ     radial and angular velocity components 

 

Greek symbols 

ρ            density 

α            thermal diffusivity 

αR          thermal diffusivity ratio (=αw / αf ) 

τ            time 

θ            angular coordinate 

ν            kinematics viscosity 

β            coefficient of volumetric thermal expansion 

ξ            dimensionless logarithmic coordinate (=ln r) 

           dimensionless temperature (=T−T∞/Ti−T∞) 

ψ           dimensionless stream function (=ψ′/αf) 

Ω           dimensionless vorticity (=−Ω′ri
2
/αf ) 

 

Subscript 

i             inner surface of cylinder 

o            outer surface of cylinder 

∞            at infinite distance from the cylinder surface 

w           cylinder wall 

f             fluid 

 

Abbreviations 

Num.      Numerical 

Exp.       Experimental 

Theor.    Theoretical 
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