STUDIES ON SOME GASTROINTESTINAL PARASITES AFFECTING ZOO ANIMALS IN ALEXANDRIA GOVERNORAT

Karima, M. Elbakery

Animal Health Research Institute Alexandria Branch

ABSTRACT

In the present study 34 different animals at Alexandria Zoo were examined parasitologically for detection of Gastrointestinal parasites.

The investigation of zoo animals(3 Adult Common Zebra

12 Barbary sheep 4 Bactrian camels 1Nilgai ,5African Lions 2Chimpanzees 1Giraffe I Elephant, 4 Lama and 1 Gazelle) revealed that the overall prevalence of parasitic infection was 43%, Seven species of parasites.

Were 4 helminthes from which Trichostrongyluscolumniformis Ostertagia circumcincta from lama at 35.3% & 33.2% respectively.

Strongyloides papillosus from Barbary sheep 78% and Toxocara cati from African lions (23%).

And 3 protozoa Eimeria species from Bactrian camels (21.1%), Entamoeba histolytica cysts and Cryptosporidium oocysts from Chimpanzees at an incidence of 43.5% and 23.4% respectively. While the collected samples from common zebra, Nilgai, Gazalle, Giraffe and Elephant were free from any intestinal parasites.

INTRODUCTION

The importance of zoo animals has a special attention of many workers all over the world who studied their behavior and discases under captive condition. Recentally in Egypt much attention was applied to the parasites especially the endo parasites of zoo animals due to wide distribution of the infective pathogens (Fowler 1978, 1986).

Although parasitic diseases are quite common frequently occurring in association with other etiological agents in cases of enteric disorders, few workers were interested in the Ocurrance, Identification and Pathogenesis of

parasites of Egyptian wild life.

Wild animals are exposed to numerous species of internal and external parasites which irritate, injure and debilitate them. The evaluation of parasitic diseases and their effecting wild animals is difficult because few workers are able to observe elinical symptoms of the diseases under complete natural conditions.

Infection with parasites can lead to serious diseases and is after seen in captive animals (Okaeme, 1985). Parasitic burdens constitute one of the major manage mental problems in

wild animals in captivity, causing high mortality mostly among the young ones. In addition to they considered as a carriers or reservoir for many dangerous parasites (Dovgalev and Posokhov, 1987). Their role in transmission of parasitic diseases to domesticated animals and man was previously studied by some authors El-Azazy, 1981; Amer, 1984; Abd El- Aal, 1990 and Essawi-Halla, 1993.

The present investigation aimed to through the light on the parasite burdens of the wild animals at Alexandria zoo to elucidate their role in the biological contamination of the environment

MATERIAL AND METHODS

Faecal samples were collected from the different zoo animals in a clean sterile polyethylene bags labeled with a different data as species and date then transferred immediately to the laboratory for parasitological examination. The collected faecal samples of each animals were examined by direct smear techniques The negative one were subjected for further examination by Concentration floatation technique using saturated salt solution and sugar solution as well as sedimentation technique as described by (Kruse and Pritchard, 1982). In addition, the samples were also examined for the presence of protozoan parasites by Modified Zeihl Neelsen tech-

nique according to (Henriksen and Pholenz, 1981). Faecal culture was performed for larval identification as mentioned by (Echert, 1960) and the lugol solution was added before the microscopical examination as stated by (Georgi and Georgi, 1990). The recovered larvae was identified according to (Soulsby, 1982).

RESULTS

Obtained results showed that the overall prevalence of parasitic funna among different species of the wild animals at Alexandria zoo was 43% and the prevalence of each parasites was summarized in the Tables.

Seven species of parasites were identified 4 Helminths.

Trichtrongylus eolumriformis. Ostertagia eircumcincta from lama 35.3% and 33.3% respectively. Strongyloides papillosus, from Barbary sheep 78% Toxocara cati from African lion. 23% and 3 protozoa

Eimerla species from Bactrian cainels 21.1% and Cryptosporidium species and Entamoeba histolytica 43.5 & 23.4 respectively from Chimpanzees.

The morphological characters of each stage of the recorded parasites were summarized in tables. 1. 2 & 3.

Table (1) showing morphological characters of the recovered parasites

species	Host	Length(u)	Width(u)	Remarks					
Strongyloides eggs	Lama	80	20-30	Thin-shelled, Broad ellipse with Barrel-shaped side wall and the blastomeres are vary in number.					
Strongyloides eggs	Barbary sheep	47-65	25-26	Broad oval has a slightly flattened poles, thin shell, colourless, Embryonated containing larvae.					
Toxocara cati eggs	African lion	69-95	60-77	Subglobular in shape with thick albuminous shell and granular content with fine pitted surface to the shell.					

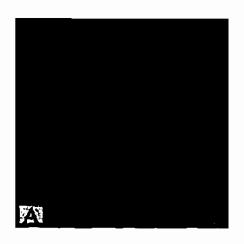
Table (2) showing some morphological characters of the recovered nematode larvae

Species	Host	No. of Gut cell	Body Length(u)	Extension of Tail sheath(u)	Remarks			
Trichostrongylus colubriformis	Lama	16	700	25	Head tapered, tail form a short cone posterioly.			
Ostertagia circumcincta	Lama	16	800	33.4	Head square, Sheath tail forms short cone.			
Stongyloides papillosus	Barbary sheep	Not clear	600	Absent	Oesophagus extends nearly half length of body.			

Table (3)Showing morphological characters of identified protozoan parasites

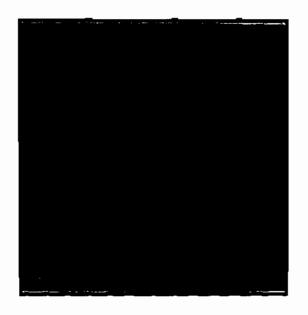
Species	Host	Size	Remarks					
Entamoeba histolytica cyst	Chimpanzees.	8-18um(15um)	Spherical in shape containing single nucleus with central endosome and regularly distributed chromatin is visible					
Cryptosporidium oocyst.	Chimpanzecs.	4-8um(5.5um)	Small in size spherical in shape smooth wall the cyst appear red on green background					
Eimeria spp.	Bactrian camels	45-54um	Ovoid in shape thick wall dark brown micropyle and micropylar cap are present					

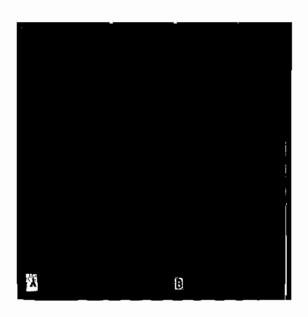
Table (4) showing the prevalence of parasites in wild 200 animals at Alexandria 200.

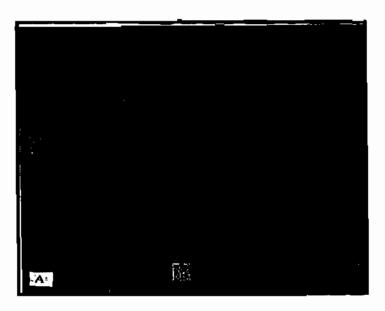

I 1 -		Heinduibes eggs				Protozona parasites										
	Total no. of a exemined assumpte	Nematoda eggi		Toxocara eggs		L histolytica cyst		Cryptosporidial			Elmeria app. pocyni					
		Positiva	N _D	%	Politive	No.	*	Positive	No.	%	Positive	No.	%	Positive	No	*
African Hoss	72	-	-		+	16	23		•	-		-	-		•	
Chlorpaneess	24	•	-			·	·	+	13	43.5	+	6	23.4		·	
Linns	96	+	32	33.2			•	-		-			•	•	•	
Berbary sheep	120	*	93	78	-		-	-	-		-	-	-	-		
Bectrien comets	96	-	-					•	-		-		-	20-	·	21.1


Eimerla spp OocystX500

Cryptosporidium spp. Oocyst (X1000).


(A) (Strongyle eggs (x 500).


(B) Strongyloides papillosus eggs (x500).


(C) Toxocara catl eggs (x 500).

Ostertagia circumcincata(x500)
A) Anterior end
(B)Posterior end

Trichostrongylus colubriformis
(A)Anterior eud
(B)Posterior end

Strongyloides papillosus.
(A) Anterior end
(B)Posterior end

DISCUSSION

The present study was carried out to identify the parasite which infecting some wild animals at Alexandria zoo via coprological examination.

In the present study the overall prevalence of parasitic burdens among wild animals at Alexandria zoo was 43%. [Seven parasite species were recorded 4 belianthes (Trichostrongylus eolubriformis, Ostertagia erreumeinuta in Lama, Strongyloides papillosus in Barbary sheep And Toxocara catileggs in African lions and 3 protozoan parasites, Entamoeba histolytica cyst, Cryptosporidium oocyst in Chimpanzees and Eimeria species in Bactrian camels these results were agreed with those obtained by Dollinger & Ruedi (1974); Anderson (1984); Hird et. al. (1984) in Calfornia; Selim (1988); Ahmed-Madeha (1992), Ghandour et. al. (1995) in Saudi Arabia. and I. S. EL-Shahawy et. al. (2006).

The present study found that the prevalence of Toxocara cati eggs among African lions was 24.4%. This result were agreed with those obtained by EI-Shahawy & Abdel Razek (2006), but varied with that obtained by Kathe et. al. (2000) who recorded that the prevalence of Toxocara cati among wild lions (Panthera leo) in northern Tanzania was 9%. This variation might be attributed to locality and hygienic measures.

In Lama, the present work recorded 2 nematode species larvae (Trichostrongylus colubriformis and Ostertagia circumcineta) depending up on the faccal culture with an infection rate of 43.5, 23.4. This result were agreed with those obtained by **El-Shahawy &**

Abdel Razek (2006) but, disagre-ed with that obtained by Fakae (1990) who found that the prevalence of Trichostrongylus species among Lama in eastern Nigeria was 63.8%, this might be attributed to the nature of pasture and difference in the environmental condition. On the other hand the prevalence of Strongyloides papillosus larvae among Barbary sheep in the present study was 78%, slightly similar results were obtained by Selim, (1988) from Sambars. Aryal Egyptian deers and Barbary sheep examined from Giza Zoological gardens, but lower than that obtained by El-Shahawy & Abdel Razek (2006).

In the present work the prevalence of Entamoeba histolytica cyst and Cryptosporidium oocyst among.

Chimpaneezs were 43.5 % 23.4% respectively. This results were nearly similar to those obtained by El-Shahawy and Abdel Razek (2006) but varied with that obtained by Munene et. al. (1998): Legesse and Erko (2004) and Takano et. al. (2005) who reported that the prevalence of Entamocha histolytica and Cryptosporidium occyst was 24.8% in Kenya for Entamoeba histolytica: 16.9% and 11.9% among Pabio anubis (baboons) in Ethiopia and 37.5% in China rcspectively. This variation could be due to the difference in the environmental condition and hygienic measures. As well as the present study recorded that the prevalence of Eimeria species oocyst among Bactrain camels was 21.1%. This results were similler to those obtained by Omar et. al. (2000) who concluded that the infection rate of Eimeria species in camels was 22.2% in Egypt. but varied with . El-Shahawy & Abdel Razek (2006) .

REFRENCES

Abd-El-Aal, **A.** (1990): Some studies on helminth parasites of wild animals in Sinai area M.V.SC. Thesis (parasitology). Fac.Vet.Med., Suez Canal University.

Amer, O. (1984): Some studies on the helminth parasites of some wild animals. M.V.Sc. Thesis. Fac. Vet. Med. Zagazig University.

Ahmed-Madeha, K. (1992): The role of some zoo- animals in transmitting some parasitic diseases to man.M.V.Sc.Thesis (zoonoses), Fac. Vet. Med. Alexandria University.

Anderson, R. (1984): The origin of zoo parasitic nematodes. Canad. J. Zool., 62:317-328.

Dolllinger, R. & Ruedi, D. (1974): Endo parasites in the primate colony of the Basle zoo and treatment trials with mebendazole and levamisole. Zoologische Garden, 44: 329-337.

Dovgalev. A. and Posokov.P. (1987): Zoonolics helminthiasis in the central amur region.Med.Tsinskaya.Parasitologiya-1- parazitamye-Bolezni.(2):41-45.

El-Azazy, O. (1981): Biological studies on parasites of wild rats in Sharkia Governorate and its importance to public health. Ph.D. Thesis (Parasitology) Fac. Vet. Med. Zagazig University.

Echert. J. (1960): The diagnosis of gastrointestinal strongylosis in the sheep by differentiation of the free living third stage larvae.

Zenralbiatl fur. Vet. Mcd., 94, 612-629

Essawi-Halla, M. (1993): Rodents as a reservoir of some zoonotic parasitic diseases. M. V. Sc. Thesis(Zoonoscs). Fac Vet. Med. Alexandria University.

Fakae, **B.** (1990): The epidemiology of helminthosis in small runninants under the traditional husbandry system in eastern Nigeria. Vet. Res. Commun. 14(5):381-391.

Fowler, M. E. (1978): "Zoo and wild animals Medicine" 1st Ed W. B. Saunders Company, Philadelphia, London, Toronto.

Fowler, M. E. (1986): "Zoo and wild animals Medicine" 2nd Ed W.B. Saunders Company, USA.

Georgi, J. and Geogri (1990): Parasitology for veterinarians 5th ed.

Ghandour, A.; Zahid, N.; Kamal, K. and Bouq, A. (1995): Zoonotic Intestinal parasites of hamadryas baboons Papio hamadryas in the western and northern regions of Saudi Arabia. J. Trop. Mcd. Hyg., 98 (6): 431-439.

Henriksen, S. A. and Pholanz, J. F. (1981): Staining of Cryptosporidium by modified zelhl Neelsen technique. Act. Vet. Scand.. 22:594-596.

Hird, D.; Anderson, J. and Bielitzhi, J. (1984): Diarrhea in non-human primate: A survey of primate colonies for incidence rates and clinical opinion. Lab. Anima. Sci., 44: 456-470.

IEIShahawy and Abdel-Razek Y. Desouky (2006): studies on the parasites of wild animals at Kafr EL-Sheikh city zoo with special refrence to toxocara cati. Kafr El-Sheikh Vet.Med.J.Vol.4 No.1.

Kathe, E.; Gary, A. and Bert, E. (2000): Parasites and parasite stages of free ranging wild lions(Panthera leo) of northern Tanzania.

J. Zoo and Wildlife Medicine, 31(1):56-61.

Kruse, G. O. W. and Pritchard, M. H. (1982): The collection and preservation of animal parasite. University of Nebraska press-Lincolon and London.

Legesse, M. and Erko, B. (2004): Zoonatic intestinal parasites in Papio anubis (baboon) and Cercopithecus aethiops (vervet) from four localities in Ethiopia. Acta Trop., 90(3): 231-236.

Munene, E.; Otsyula, M.; Mbaahu, D.; Mutahi; W.; Mnriuki; S. and Muchemi, G. (1998): Helminth and protozoan gastrointestinal tract parasites in captive and wild trapped African non-human primates.

Vet. Parasitol., 78(3): 195-201

Okaem, N. A. (1985): "Helmin the eggs counts of some wild animals in the Kainji Lake National park, Nigeria: Intern. J. Zoon. 9:62-64...

Omar, S.; Malaka, F. and El-Kalla, A. (2000): Some studies on parasitic infection in Miniature horse, Assuit Vet. Med. J., 43 (86): 271-279.

Selim (1988): Some studies on parasilie disease of zoo animals, Ph.D. Thesis, Fac. Vel. Med. Zagazig University.

Soulsby, E. J. (1982): Helminthes, Arthropods and Protozoa of domes-ticated animals. Bailliere Tindall Ltd, 7th ed., British Library, London.

Takano, J.; Narita, T.; Tachibana, H.; Shimizu, T.; Komatsubara, H.; Terao, K. and Fujimoto, K. (2005): Entainoeba histolytica and Entamoeba dispar infection in cynomolgus monkeys imported into Japan for research. Parasitol. Res., 97(3):255-257.

Karima, M. Elbakery 70

الملخص العربي

دراسة عن بعض الطفيليات المعدية المعوية التي تصيب حيوانات حديقة الحيوان بالإسكندرية

کریمه محمد البکری معهد بحوث صحة الجوان – فرع الإسکندرية

أجربت هذه الدراسة على عدد ٣٤ حيوان برى مرجودة في حديقة الحيوان بالإسكندرية وبيانها كالآتي : عدد ١٢ كبش أروى، ٤ جمل ذو سنامين، ٥ أسود أفريقية، ٢ شمبانرى، ١ زرافة ، ١ فيل أفريقي، ٤ لاما، ١ غزالة، ١ نالجاى، ٣ حمار وحشى، وذلك للتعرف على إصابتهم بالطفيليات المختلفة وذلك بواسطة طرق الفحص المختلفة لعينات البراز، وأوضحت النتائج أن نسبة الإصابة العامة بالطفيليات المختلفة في المحيوانات المفحوصة كانت ٤٣٪ وتم تعريف سبع أنواع من الطفيليات أربعة منها تنتمي إلى الديدان وهي ترايكوسترونجياس كولابريفرميز واسترتاجيا ميركمستكاتا من اللاما واسترونجلويدس بابيلورس من الكيش الأروى وتوكسوكاراكائي من الأسود الأفريقية وثلاثة أنواع ننتمي إلى الأوليات وهي إنتاميبا هستوليتيكا ونوع كريتوسبورديم من الشمبانزي بالإضافة إلى نوع من الأبيريا من الجمال ذات السنامين، كما تم ترصيف الطفيليات التي ثم تسجيلها وصفاً ظاهرياً دقيقاً، وهذه الدراسة تاتي الضوء على الدور الذي تلعبه الحيوانات البرية في التلوث البيطوجي للبئة وكذلك في نقل الطفيليات المشتركة إلى الإنسان خاصة المتعاملون معها في حداثق الحبوان، ولنشر الوعي بين الزائرين كي براعي المذر في التعامل مع هذه الحيوانات.