

Final Exam

Operating System

Computer and Syst. Dept. Time Allowed: 3 hrs. Dr: Ahmed Saleh 2012–2013

Solve as you can:

Question 1: Define Operating system, then:

- o What are OS goals?
- o What are the different types of OS?

Question 2: True or False (and why?)

- (a) The number of the cylinders is greater than the number of tracks in any surface. (b) Paging may suffer from external and internal fragmentations.
 - (c) In paging Frame size may be (in some cases) greater than page size.
 (d) Each process must have a process control block (PCB) in memory.

Question 3: Explain why? (Use the minimum words)

- (a) It is important to include inter-Track and inter-Sector gaps on the disk surface.
- (b) Memory is a preemptable recourse, while CD driver is not.

Question 4: Use figures only to:

- (a) Explain the linked disk allocation method.
- (b) Ready queue and input queue.
- (c) Different process states.
- (d) Block diagram showing the computer internal structure.
- (e) Explain how MMU works.
- (f) Different steps for processing a user program.

Question 5:

i. Define (in few words) the following Terms:

Sector, Cylinder, Disk access time, Disk bandwidth

Then use the SSTF scheduling technique to calculate the total head movement for the following:

- Queue: 98, 183, 37, 122, 14, 124, 65, 67, 25, 78, 107,15
- . Head starts at: 53.
- ii. A hard disk has 4096 tracks on each surface. It has 4 plates. There are 1024 sectors per track and each sector stores 512 bytes, calculate:
- Number of tracks per cylinder.
- Number of cylinders in the disk.
- Number of tracks in the disk.
- Cylinder size.
- Total Disk size.
- size of the data that can be read by the head at a time?

Question 6: What is the main difference between?

- (a) A process and a program.
- (b) Paging and demand paging.
- (c) Internal and external fragmentations.
- (d) Virtual memory and cache memory.

Question 7: Discuss what is meant by the following parameters:

CPU utilization, System throughput, Turnaround time, Waiting time, Response time, Context switch. **Then**, Consider the following set of processes, with the length of the CPU burst time given in milliseconds:

Process	Burst Time
P ₁ ~	3
P ₂	4
P ₃	1
P ₄	4
P ₅	2
P ₆	6

Using FCFS then SJF then RR with Q=2 algorithms;

- (a) Draw the Gant chart illustrates the execution of these processes.
- (b) What is the Waiting Time (WT) for each process, and then calculate the Average Waiting Time (AWT) for all processes.
- (c) What is the Turnaround time for each process?

Question 8: Give brief definition for:

- (a) Deadlock.
- (b) Safe sequence.
- (c) Valid-invalid bit.

Question 9: Determine the number of page fault using optimal page replacement algorithm <u>using 4 memory frames</u> with the following reference string:

7,0,1,2,1,0,3,0,4,4,5,4,2,3,0,5,3,2,1,2,4,0,1,7,0,1

Question 10: For the following Resource Allocation Graph:

- What is the safe sequence?
- If P2 requests R7, is it reasonable to grant this request?

With Best Wishes ... 🙂 ... Dr: Ahmed Saleh

PLZ, send your comments about the exam to: aisaleh@yahoo.com