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ON THEORY DF THE INVERSE PROBLEM OF STEADY, TWO-DIMENSIONAL
HEAT CONDUCTION IN A Hollaw CYLINDER WALL

v - - - [ -
,1_“_J}§.ZibhnltrJ.ﬁlm.JJh_owJL__L:Y{Lﬂi;J’ajLuJJJ)_Ja gL?
Mohammed Mosaad
ttechanical Engineering Department
Faculty of Eng., 355146 Mansoura University,

bt P2 pae i) it ) JBzY it b e s ol 5t el

L Jdate v gbnatba spe 5 2 S LS D) s, whb

clooa) 2l cauudl JodTa b de 2 amil e asond pla Jlos >

A PPr PO P () - S00 U1 S PAU) BES PR PR Bt ) R ST SREN
s alas iddos Jho e &, BV e et Vi

143;__

Abstract

An inverse problem of steady, two—-dimensional heat conduction in a
hollow cylinder wall of constant thermal conductivity, has been
analyzed. Solution in form of a convergent series has been obtained.
Simple test problem, has known exact salution, proves validity of
the solution method. By truncating the series, approximate solutions

of simple form result which are of reasonable .accuracy and compare
well with known exact solutions.

1. Introduction

In many. physical situations, the heat transfer characteristics at
one side of a domain have ta be evaluated from corresponding
measurements at the opposite side without auxiliary information at
the other sides ef the body. This problem is identified as inversa
heat conduct:ion problem (IHCP) C£2]1 and ts distinctly different from
the direct problem, in which the temperature distribution of a bady
is to be determined from data specified over the entire surtface. In
practice, such direct heat transfer problems occur mainly in design
appligations while inverse problems are encountered in  analysis of
experimental data. The inwverse problem arises when a surface may be
unsuitable for fixation of temperature sensor due to technical
difficulty, or when the accuracy of the surface measurement may
seriously impaired by the presence of the sensor, which may affect
the surface condition as well as disturb the flaw and heat transter
clase ta the surface. Therefore, it is desired in some situations
to predict the temperature and heat flux at a certain surface
from data measured at the opposite side surface only. Generally,
the inverse problems in heat conduction are divided to steady-state
and transient problems [4]1. The inverse prohlem of transient, 1—-d.
heat conduction has anailytically been s0lved for sample
peametries at first by Burggraft [&] and later by Widder [S5].

In the present paper, we analyze an inverse problem $ype for
steady, 2-dimensional heat conduction in a hollow cylinder wall of
constant thermal conductivity. The problem is characterized by
specifying temperature and 1&s radial derivative profiles aft ong
houndary surface: each profile is a continuous and deferential
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function of the variable z (cf. Fig. 1. The objective aof tke
presant work is to obtain analytically the (r,z) solution of
temperature and heat flux 1n the cylinder wall including the
baundaries. The main difficul¥ly of the stated problem lies in the
fact that only two boundary conditions are known anag at one side

surface. The problem 1is guite differsnt from the corresponding
direct one whose solution necessitates four boundary conditions
{temperature or heat Fflux or thereof); with two far each
coardinate.

Analytical 2Z2-dimensional sclution of the temperature and heat

flux for the hollow cylinder wall has been obtained, which 1in the
form of a convergent series. The solution is somewhat similar to
that derived by Burggrat [41 for £he inverse problem  of

transient, one-dimensiocnal heat conduction. The similarity between
the two solution lies mainly in that the z-space variable in our
solution simulates the role of the time variable in the transient,
1-d. soiution.

The present analytical solution may be one of considerable
practical interest, however, to some experimental heat transfer
investigations. The method may be applied to evaluate measured data
from a steady-state experiment, in which heat flux profile is
measured at an isothermal surface, or temperature profile is
measured at perfectly insulated surface; and it is required to
estimate the temperature and heat flux distributions af the oppaosite
surface.

2. Problem description and solution

Figure 1 states an inversg problem type for steady,
two—dimensional, heat conduction 1n a hollow cylinder of constant
thermal conductivity. The temperature and 1ts exterior radial

darivative at the outside surface are known as functions of the
coordinate z. Qur main purpose is to obtain an =2xpression for  the
(r,z) temperature field of the cylindrical wall domain including the
surface baundaries.
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Figure 1 Froblem description

If there is no heat generation, this probolem mav be modaled
by the governing differential eauation,
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with the boundary conditions,

T(ro,z)= gz}, (23
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Similar to that followed in analysis of the corresponding praoblem
in the case of a planar, two-dimensional wall L7-813, the general
spglution of the twa dimengional. temperature field can be assumed to
be an infinite series involving the exterior radial temperature
gradient as
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Tir,zy = ¢n(r)

After some mathematical manipulations using the basic differential
eguation (1) with eguation (4), the above expression of the
temperature field can be transformed to express by
o0 00
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This mathematical transfarmation process is simillar to ‘that made

for the plane wall [8]. For simplify notion , we set T(ro,zl = T0

and g (ro,z) =a, in the abowve eguation as well as in the remainder
r

of the paper. It is important to observe fram the r.h.s. of eguation
{S) that for an perfectiy insulated surface at r , the terms of
[=]

A {r)-coefticients ‘involving in the first summation sign satisfies
Lo}

alone the splution, while for {ispthermal) surface condition at the
outer surface, the terms of B {(r)-coefficients involving in the
n

second summation sign satisfies alone the salution. NOw , the
remaining problem is to determine the functions A (r) and B (r) in
n n

eq. (5). These functions are determined by substituting egquation (35)
into the basic differential equation (1), this yields

0
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A solution is obtained by requiring
brackets aof equation (3)

that

P
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With n =1,2,3,.-1in the

an the A (x) and B {x)
ia) n

above two equations.
functions are determined

that the probtlem solution exactly matches the

each
is identically zero, thus one obtains

The

term inside the
= 0 (73
=0 8
boundary conditions

from the reguirement

two known boundary

conditions at the outer surface. The first boundary condition {eq.
(21) fulfills the general esquation (3) so that
3] o
‘ er‘lT lr dan
Tir ,2)=T =% A {(r) ° =3y B (r) @ (9
a =) n o zn k n o Zn
dz d=
n=Q n=gQ
This condition gives
A (r)=1, B (r =4 and A (r =8 (r )= O; n = 1,2,.. (1)
Q -3 o a n =] n =3
The second boundary condition {eeq. (Z)) satisfies the general
solufion that
© Zn @ Zn
a1 . g T \ . a” g,
qg = - kg; ==k y A (r) zn )] Bn(roi - (113
= Lt (=]
. / dz / d=z
n=o n=o
which gaives
B (rd=—1, A (r)=0and A (r )= B (r )= 0; n = 1,2,...- (12
o o Q a n a n =3
The solution to eqs. (/)%{(H) subject to the boundary conditions
given by eqs. (19) and (12) completely determines the A (r) and
1]
E (r) functions. Note that these functions must be determined in
[al
a seguential manner starting with Aotr) and BO(rJ. Ge%eral resul s
are not available as in the case2 af plane wall Lz1, hawever, the
leading terms are given by
2
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and the solution for Bn(rl are:
a
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Successive terms are generated easily from equations (7)) and (8).
By substituting A (r)Y—and B (r)-series from egs. (1351 %(1a) into
Lal ™

equation (3, the general solution of temperature field is
daetermined which can also he eypressed as Tollows

® Zn it Zn
rc - d Tc 1( d qo
Tlr,z}t= |T - ="1Inl—)q + A (r) + = ? B (r)y—— (13
= K r o n 2n k n Zn
o dz dz
n=1 n=1

Fraom the right-hand side of the above equation, it is important to
note that the term inside the brackets represents a steady,
one-dimensional heat conduction solution {in r—direction) for
constant To and qo values; and the sffect of two-dimens:ianal heat

flow are included 1n the remaining terms.
Finally, from equation (13 with Fourier ‘s law

q (z) = —-% = (1&)

@ 2 @™
~ ) a?hr T, a*m
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Temparature and heat flux of the inner cylinder surface can be
talculated trom eqg. (15} and =a. (17), respectively; with r = "o

It is evident that the solution is explicit. The basic reguirement
af the analysis 15 that the surface temperature and teat flux are
assumed to be uniform and varied with wall length. In other words,
the two Tunctions w(z)and £ (z) must be continuous and 1%ts TFirst n
derivatives should be exist, Subject to this condition the method is
applicabie.
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3. Test Problem and Discussion

fn the preceding section, general solution of the stated
inverse preoblem of steady heat conduction in a hollow cylinder
wall has been obhtained. The axial distribution for each of the
temperature and its exterior radial—-gradient .. - (both at at the

outer surface roi are the two boundary conditions required to
obtain the present solution. Each of the two b. conditions has
ta be in form of a continuous and differential function.

Haowever, it is important to caonsider a test problem, has known
exact solution, in order to examine the validity of the present
solution method as well as to illustrate its application in more
detail. As no a such test problem 15 available to us from
references, we construct the following one s

Consider a hollow cylinder {r, 3T L} of constant thermal
19

conductivity exposed to constant heating flux g at outer surface.
The temperature of the inner surface is Tir ,2z) = Ao + Aicuﬁ "
L

The ather two boundary surface (r,0} and {(r,L) are insulated.
This problem has analytically been solved by the method of

superposition principle in appendix (A). This solution reads
- L (Er}Ki(Er )+I‘t?r )Kotgr) qr -
Tir,z)= a + Aicostﬁi) E — L © = -1
@ T Y G ELr I e T O LA i
o L i 1 L o 1 Lo o L %
(@ &=}
Now, we come to use the present method to spolve the same problem,

however, using only the following two b. conditions at the outer
surface;

g = - q, {given in the original problem) (19)
<
T°= T(ro,z) {calculated from eq. (18) with r = r ) (29)
° .
As g is constant, the general solution (eqg. (13) in sec. 2) is
° .
reduced to
@® 2
r ~ d“"T
Tir,z)= [T + ="1ln(—)1q ] + ?n (r ° 20
o K r ° [ In
o dz
n=0
The temperature derivative terms in the above eqguation is

calculated using eq. (Z0), and A (r) from eq. {13). Thus Ti(r,z}
inl

becomes known. A5 na closed form sclution seems to be found by eg.
{21}, only results in digital values are available. Therefore, To
check . the valadityoefthis solution with referred to the known
exact one, the temperature grofile 1is calculated at the inner
surface by eq. (21) with r = ro Figure 1 shaows the resultant

comparison, where results from eq. (21) (with n = 1, and n = 2}
are compared with the exact solution. The results are represented
in terms of the dimensionless innear surface temperature
(Ttrl,zJ/(Ao+n1)) versus the axial position {(z/1:. 1t is seen that

the present sotlution converges very rapidly, the results forn = 2
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being indistinguishable from those of exact solution. The maximum
absalute error in the aporoximate solution with A = 1 1s 1n order
ot magnitude of 1%. whereas it 1s fast 0% for n = 2. see Figure 1b.
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Figure 1 Comparison exact solution with the present solution {(for

v 1om, L/ =8, r /ro= 2, k= .18 W/ (@*Cr, g= 30 W/ cal)
19

4. Final remarks

So far, the 2Z-dimensional temperature <solution of an inverse
problem of steady heat conduction in a hollow cylinder of constant
thermal conductivity, has been obtained. The solution is explicit

The prerequisite is that the temperature and its r—gradient are
known at the boundary surface r.i both are functions of the =«

variable. These two functions musf be continues and differential.
Subject ta this condition the present method is applicable.

It 1s important to nate that in carrving out the analysis, na
reference was made to the boundary conditions on the two boundary
planes (r,® and {(r,pr). However, this omission 1s no cause Tor
concern. Because of the known smooth nature of the linear
governing equation, the temperature distribution T{r,0) and Tir,n}
is uniquely specified when the surface temperature profile Tig,z»

and its r—gradient are given over the interval (0 £ z £ ). The
test problem, presented in section 3, confirm this fact and
reveal that the present method is correct ano reliable. Results

show that representation of the solution by a few terms of the
series is appropriate and of reasonable accuracy.

The solution may also be one of considerable practical
interest, however, to some experimental heat transter
investigations in pipe, as for a steady experiment, in which heat
flux distribution is measured at an isothermal outer surface, or
temperature profile is measured along an insulated outer
surface, and it is desired to predict the correspondina values - of
temperature and heat flux at the oppusite side surface. However,
in such practical situations, the data are not available in  form
of convenient theoretical expressions for temperature ar heat flux

but as tabulated data measured at discrete points. Theretore, t0o
apply the present solution, the data should be expressed
analytically, by curve-Tit formulas {(2.g., palvynomial}! using {(tor

instance! the least squares technique, in order %o evaluate the
derivatives 1n eguation (1%5).
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Appendix (A)

In this appendix we construct an exact analytical solutiaon for
a particular problem of steady two-dimensional heat conduction in
a hollow cylinder. This analytical sclution will bhe used as a test
to make check on the wvalidity of the general solution method
derived in this paper in section 2. For this purpose, we consider
a hollow cylinder of constant thermal conductivity. The
temperature at the inside surface 1s given as a cosine function,
and the outer surface is exposed t0 constant heating flux g, while
the other sides are insulated. According (o the reference
cpordinate system depicted in Figure i, the problem can be
modeled by the governing differential equation
z
g,

ar’t Oz

-

2
o, 27
z

ik

= 0, (AL

with the boundary conditions:

AL I a2), Tir ,2)= A + A cos"®  (A3)
ar N kK L o i L

ar| °_ aT|

2 =0 A3y, 5| = o (AS)

where Ao and A: are known constants of temperature units.

The present problem is of a diract type, since it has 4
boundary conditions; two in z-~direction and two in r—-direction.
This probiem can not be solwved directly by employing the classical
method of variables separation, since its application regquires
that? Hifferential equation and three of the boundary conditions
arg homogeneous. This prerequisite is not satistiad. Only, the
gaverning partial differential equation (Al and two boundary
conditions (A&K) and (A4) are homogeneous. However, it is possibie
o salve the problem by using the me thod af
superposition.fAccording fo this principle of superposition, the
sclution may be assumed fto be

Tir,z) = Tz(r,z) + Ti(r) (AG)
Here, Tx(P) is assumed to satisfy the one—dimensional soiution (in

r—direction) by

ale 1 aT‘
—_ - " = (A7
z r ar O )
ar
with
aTl q
—_ = e - = ] {
5 = (Ag) , T ir )= 0 A
r
©
Hence, the solution of eqg. (A7) subject top the . condit:ions

(A8 and t(A?) is
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T (r) =— —" 1lnir/r ) (A10)
1 L
Then, combining eqs. {(Al1)—-{(A9), we fined that thr,z) is satisfied
by
2T 1 av_ a°7 .
z = s - O, (Al
ar’ ar 622
with
aT ez
2 =a A1y, T {r ,z2)= A + A cos = (A1Z)
ar ) z i o 1 L.
rO
aT2 aTz
L = - = (ALS)
3= s} (Al4gy, 5z o
r
=]
By use of the classical method of variables separation: Tz(r,z)
can he assumed,
Tz(r,zl = Rir) . Z(z) (ALS)
When substituted into equatian (Al1l) this yields
z z
ralR o, 1R 1472 @17
R drz rR dr dz*
The left side, a function of r alone, can equal the right side, a
functi?n aof z alone, only if both sides equal a constant value,
say i , thus one aobtains
z
9Z sa*z=0 (A1B)
F4
az
dRr*? 1 dR
&« 28 S RrR A% =aq (A19)
dr? r dr
The solution of equationr (Ai7) can he written as
Z(z) = E; sin Az + Cz cos Az (A20)
and that of eguation {A18) as
Rir) = B I {Ar) + B ¥olAr) (AZ21}
1 o 2 o
fApplying the boundary conditions{(Al4)on eq. (AZ0) gives = 0O, and
(A1S) vields Czsin {AL) = O which raequires that sin (AL} = © or
kn = QE; n =1,2,... Thus, eguation (AZ0) becomes
m®
Z¢z) =Z C,cos (A z3 (A22)
=0
Hy using the boundary conditions (A1Z) with ea. (AZ17 ;5 the o.
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condition (412) yields

B.= B I, (k) /K (n
(AZ1) reads as = > SRPK e )L Thug,

equ tion

Rir) = p I ¢ ) <
. ( o Ar) o+ IitkroJ KO(ArI/ht(LPO}) {RA23)

Substituting eg. (AZ3) 2% (A(22) into eqg. (Al&), one obtains

o

Totr,m= 3 € eosth (L QL r) + 1 LK (N RI/K Ok )Y (AZA)
o O n o n 1 "n o a "n | S

h ¢ .

where the canstants Bl and Cz are combined and replaced by

Cn. Finally, applying the boundary condition (A1Z) an equation
(AZ24) gives

[19]
A+ A cusﬂi =§ C cos(h 2YCI (A )+ Y
o X = n n [4 o nr1 Il(x“ro) ko(xnrl)/Kitxnro))

g =]
which holds ifC = C - = ¢ _
2 2 = Cn o and Co = Ao and
K‘(Er bl
— (=]
C,= A, (AZS)
{1 S S S L A 1L )}
L & L o o L

Thus, equations (AZ4) becomes

e ID(Er) K‘(Er ) + I (B ) ok (T

T,mzi= A+ A cos(Th = 2 v oL (ATa)
1 I (Zr ) R By w1 By k(B
0o L1 LI L o 1 L o [« I U

Here, substitution eguations (ALD) and (A6} inta eguation (AL
yields

I Ceivw (D e e sk (B | ge
Tir,z)= A + Acos(Z&) |9 &k 1L o tLo ot -1t
° ot I (T ok (P a1 (Be yk Be oy | 4 "
= L4 i L o i1 L o o L 1
_ (6271
The above equaticn is the final result of the temperature

sglution which satisfies the given boundary conditions.
Finally, the radial heat flux can be calculated by Fourier's law;

ar
(z) = -k = (AZ)
qr y K ar
with the radial temperature gradient calculated from eg. ALZ7) g,
"
1 Gk (B v-1 (Ge ok (B "
kr nz 1 L 1L L o L L o 1 L + q (%) (829
A B = A e D T T (T a1 B ok ey r
r + = -
ID(:ri)Kttzra) 1 Lro O L 1
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Nomenc lature
A (r)s&B (r) r—dependent functions., see eqQs. (L3) and (14).
n n
A« B constants, see sq. (AT} in Appendix (A)
o] 1
k thermal conductivity. ‘
K_ & modified Sessel Functions of the 2nd kind.
o& 4
I & 1 modified Bessel Functions of the 1st kind.
a i
L cylinder length
q heat flux at the outer surface r , { =g (r .z)).
L= (=] r [=]
n Aaumber of terms in the solution series
r auter cylinder radius
o
L2l inner.cylinder radius
L
T temperature.
T temperature of the outer surface ro, (=T°(ra,z).
=]
ry,Z cvlindricall coordinates.
plzla E(x) z-dependent functions, see egs. (2) and (3).
¢iz) z—dependent functions, see eg. {(4).
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