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  المبخص
 تيتناتقندة باستخاام و ةعاديبطريقة SOFCاللببة الوقود خبدة أكسيدادراسة نمذجة  هو لهذه الورقةالبحثدة الرئدييالهاف 

 COMSOL)برنامج باستخاام ويهتم البحث باختبار موثوقدة نموذج ثنائي الأبعاد لخلايا الوقود. عبى الذكساء اللناعي

FEMLAB1.3) طبقتدن ذو تغذية تم اختبار شبكة علبدة ب الاراسة المقترحة في.الشبكة العلبدة نموذجومقارنة النتائج ب

 من مكونة خفدة طبقة واحاة مع الميتخامالشبكة العلبدة نموذج تم تاري . اللببة الوقود خبدة أكسيدا نمذجة لغرض أمامدة

الأمامدة  تغذيةذات ال الشبكة العلبدة نموذج.الانتشارة عودذو Levenberg-Marquardtعقا باستخاام خوارزم عشرة

هذا التطبدق مختبفة لال نتائجوأثبتت كسذلك ال. عاديالنموذج ال ه عبىقوفت ثبتأالتجريبدة و مع البدانات جدا لبغاية تطابق بشكل

 .دفةتعايلات طففقط ل تاحتاجFEMLAB1.3باستخااماللببة  الوقود خبدة أكسيداالعادية ل المحاكساة أن

 

Abstract 
Modeling Solid Oxide Fuel cell SOFC numerically and by AI-based technique is the main objective of this 

paper. Testing the reliability of a two dimensional numerical model of SOFC using COMSOL (FEMLAB 3.1) 

software against neural network model is another important issue that will be considered in this paper. In the 

proposed study, two layers feed forward neural network was examined for the purpose of modeling the Solid 

Oxide Fuel Cell (SOFC) system. The examined neural network model with one hidden layer of ten nodes was 

trained with the Levenberg-Marquardt back propagation algorithm. The presented feed forward neural network 

model is fitted very well with the experimental data and proved to outperform a numerical model. The various 

outcomes of this application indicate that numerical simulation of SOFC by using FEMLAB 3.1 needs minor 

modifications. A more general investigation into the potential role of neural network in modeling SOFC is 

conducted in this research. 
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1. Introduction 
 

The Solid oxide fuel cell has the potential for 

application in transportation, for example, in 

vehicular auxiliary power units (APU). 

Current SOFC technology demonstrates 

viable manufacture, feasible power ranges 

and applications. This has been accompanied 

by developments of new concepts, cell and 

stack designs, advanced processing methods 

as well as, improved and novel materials [1]. 

The structure of fuel cell is relatively simple. 

However, the difficulty of modeling such cell 

arises from the way it operates [2]. This is 

due to the large quantity of coefficients to be 

determined. Several variants of SOFCs are 

currently being built (e.g. electrolyte, anode 

or cathode supported, planar, tubular etc.). 

Additionally, fuel cell layers can be made 

from many various materials (YSZ, SDC, 

etc.) and are still under development. In 

addition, the layers forming the anode and 

cathode can have different porosities, and 

even consist of several different layers. 

SOFC technology is widely studied by 

researchers due to its merits. SOFC directly 

converts chemical energy of fuel into electric 
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current and heat. In spite of its high 

efficiency, low pollution emissions and 

sound, it suffers from high cost, thermo-

mechanical issues, sealing requirements 

under high temperature, performance 

reduction due to rapid degradation of 

elements, the need of extra equipment as well 

as long startup time [3,4]. 

The SOFC models developed thus far are 

mainly based on the Nernst equation, 

activation, ohmic, and concentration losses. 

The performance of an anode-supported solid 

oxide fuel cell (SOFC) is considered in this 

work [5]. 

Generally, mathematical modeling of 

SOFCs, require knowledge about many 

parameters of the microstructure and 

electrochemical properties of component 

materials, the exact multi-physicochemical 

processes, the operating conditions 

increasing difficulty of problem solving [6]. 

Classical mathematical models are based on 

physical process description of the fuel cells 

and required details information of that 

description administrate both chemical and 

electrical reaction. Advanced Methods of 

Solid Oxide Fuel Cell Modeling provides a 

comprehensive description of modern fuel 

cell theory and a guide to the mathematical 

modeling of SOFCs, with particular 

emphasis on the use of ANNs. Up to 

now, most of the equations involved in 

SOFC models have required the addition of 

numerous factors that are difficult to 

determine. The artificial neural network 

(ANN) can be applied to simulate an object’s 

behavior without an algorithmic solution, 

merely by utilizing available experimental 

data. Up to now, most of the equations 

involved in SOFC models have required the 

addition of numerous factors that are difficult 

to determine. The artificial neural network 

(ANN) can be applied to simulate an object’s 

behavior without an algorithmic solution, 

merely by utilizing available experimental 

data. 

Artificial neural network (ANN) has been 

widely used for modeling due to its ability to 

simulate a system as a black-box, while 

avoiding the solution of physical equations. 

Moreover, the performance of ANN depends 

upon its generalization capability. This 

means that a trained network could classify 

data from the same class as the learning data 

that it has never seen before [7].  

Usually, data are obtained from experimental 

measurements or physical models. However, 

good selection of training data is essential for 

the reason of covering all aspects of the 

problem. Moreover, randomness of input 

information should guarantee better training 

power of the neural network. 

ANN is one of the most common approaches 

in modeling chemical and physical systems 

[8]. The precision of obtained ANN model 

could be attained to the desired accuracy. 

Applications of ANN in chemistry include 

electrochemistry, spectral analysis thermal 

analysis, gas sensors, phase diagram, 

estimation of kinetic analytical parameters, 

etc [9-12].  Levenberg-Marquardt back 

propagation algorithm is applied in this work 

to train a feed forward neural network FFNN 

for modeling SOFC at two different 

temperatures. 

Numerical modeling of solid oxide fuel cells 

has been demonstrated by [13]. A detailed 

numerical model has been formulated for, 

and applied to solid oxide fuel cells (SOFCs). 

In this model, the transport of oxygen ions 

was modeled as a Fickian diffusion process 

mimicking the effect of the potential in the 

cell. The output cell voltage was based on the 

electric potential difference between the 

cathode and anode current collectors, which 

were fixed as constants. The “effective 

concentration” of ions was computed and 

then converted into ionic phase potential, 

making it possible to determine the potential 

losses due to activation and ohmic resistance. 

In this paper, the 2-D numerical simulation 

of a node-supported SOFC has been 

developed by using FEMLAB 3.1 

commercial software. The parametric study 

has been carried out by using the developed 

model to achieve the optimum operating 

conditions at different circumferences of 

SOFC operations. Moreover, the 

performance of SOFC is compared to the 



 

Mansoura Engineering Journal, (MEJ), Vol. 39, Issue 4, December 2014                                                          E: 3 

ANN model trained by Levenberg-Marquardt 

back propagation algorithm. 

The rest of this paper is organized as follows. 

Section 2 covers neural network learning 

algorithm, namely Levenberg-Marquardt. 

Mathematical model for SOFC is 

investigated in section 3. Section 4 covers 

computer simulation and results. Finally the 

conclusion is presented 

. 

2. Levenberg-Marquardt 

model  
The mentioned back propagation algorithm 

uses the gradient of the performance function 

to determine how to adjust the network 

weights to optimize the performance. An 

iteration of this algorithm is as follows: 

                                      (1) 

Where  

iX is a vector of current weights and biases, 

( )f x  is the current gradient, and i = 

learning rate 

 

Levenberg-Marquardt learning algorithm 

(LMA) was used in this paper [14]. LMA 

operates in batch mode (all inputs are applied 

to the network before weights are updated). It 

is faster and more accurate than standard 

back propagation algorithms in which it 

outperforms simple gradient descent and 

other conjugate methods in a wide variety of 

problem [15]. LMA can locate the minimum 

of a multivariable function that is expressed 

as the sum of squares of non-linear real-

valued functions [16,17]. It has become a 

standard technique for non-linear least-

squares problems [18]. 

LMA interpolates gradient descent and the 

Gauss-Newton method. When the current 

solution is close to the correct one, it 

becomes a Gauss-Newton method. When the 

current solution is far from the correct one, 

the algorithm becomes slow but guaranteed 

to converge behaving like a steepest descent 

method. 

 The Levenberg-Marquardt algorithm was 

designed to approach second-order training 

speed without having to compute the Hessian 

matrix just like the Newton method[16].  

When the performance function has the form 

of a sum of squares as it is typical in training 

feed forward networks equation (2), then the 

Hessian matrix can be approximated as 

depicted in equation (3) 

 

      
 

 
   

     
                                    (2) 

                                                  (3) 

and the gradient can be computed as 

                             

 

   

 

                                                             (4) 

where 

J isthe Jacobian matrix that contains first 

derivatives of the network errors with respect 

to the weights and biases, and e is a vector of 

network errors. The Jacobian matrix can be 

computed through a standard back 

propagation technique that is much less 

complex than computing the Hessian matrix. 

The Levenberg-Marquardt algorithm uses 

this approximation to the Hessian matrix in 

the following Newton-like update: 

1

1 [ ] ( ) ( )T T

i iX X J J I J x e x 

       

                                                             (5) 

                        
  

             

(6) 

When the scalar μ is zero, it is just Newton's 

method, using the approximate Hessian 

matrix. When μ is large, this becomes 

gradient descent with a low step size. 

Newton's method is faster and more accurate 

near an error minimum, so the aim is to shift 

towards Newton's method as quickly as 

possible. Thus, μ is decreased after each 

successful step (reduction in performance 

function) and is increased only when a 
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tentative step would increase the 

performance function. In this way, the 

performance function will always be reduced 

at each iteration of the algorithm. 
 

3. Proposed SOFC 

Mathematical Model 
 

This section is dedicated to introduce how to 

derive the different parameters of the 

proposed mathematical model. A solid oxide 

fuel cell (SOFC) consists of anode, cathode 

and an ionic conductor (electrolyte). The 

oxygen diffuses through the porous cathode 

and fuel, (hydrogen) diffuses through the 

porous anode. The oxygen at cathode accepts 

the electrons from the external circuit to form 

oxide ions. The oxide ions conducted through 

the electrolyte interface surface and combine 

with the hydrogen to form water. Then the 

electrons are released in this process flow 

through the external circuit back to cathode. 

The reactions in a hydrogen consuming 

SOFC are: 
 

 
         Cathode                      (7) 

             Anode                  (8) 

The open cell voltage can be calculated by 

using Nernst equation as follows [19]: 

      
       

      
    

         

   

    

                    (9) 

The governing equations which will be used 

to study mass transport and electrochemical 

reaction in SOFC are as follows: 

 Electronic current balance in cathode and 

anode by using conductive media DC 

equation; (1) Ionic current balance in 

electrolyte and the two electrodes by using 

conductive media DC equation; (2) Mass 

balance, Maxwell-Stefan equation will be 

used at the two electrodes, electrodes, and (3) 

Momentum equation, Darcy’s law applied to 

study the flow in porous media, electrodes 

The mass balance at steady state in the 

macroscopic structure is according the 

following equation [19]: 

                                              (10) 

For species i = N2, O2 in the cathode and, i = 

H2, H2O in the anode. 

Where Ni denotes the flux vector and Ri 

denotes the consumption term. For nitrogen 

(N2), the consumption term Ri is equal to 

zero. The flux vector is given by Fickean 

formulation, obtained from Maxwell-Stefan 

equations, so that mass balance can be 

calculated as the following equation depicts: 

          
 

  
       

  

 
  

         

(11) 

in the two electrodes 

The density of the oxidizer (air) in the 

cathode can be calculated as follows: 

     
    

                  
             (12) 

Equation (12) is also applicable for the anode 

by replacing 2O and 2N by 2H and 2H O  

The Maxwell-Stefan diffusivities can be 

described for cathode and anode with an 

empirical equation as showed by [19], based 

on kinetic gas theory for the gas mixture in 

the cathode as follows: 

      
   

     

        

   
    

   
 
 

 

   

 
 

   

 
   

  

                                                          (13) 

Moreover, the gas mixture in the anode can 

be represented by equation (13) by replacing 

( 2O and 2N ) by ( 2H and 2H O ). Where 

DK is constant, iV denotes the molar 

diffusion volume of species i (m
3
 mole

-1
) 

In the porous cathode and anode, the 

effective binary diffusivities depend on the 

porosity ( ), of the two electrodes according 

to: 

    
   

      
                                (14) 

The balance of the current induced by the 

migration of oxide ions and hydrogen ions in 

the two electrodes can be written as: 
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                                                       (15) 

Where iK denotes the ionic electrode 

conductivity (Sm
-1

), i is the ionic potential 

(V) and Q is the current source term, as 

shown by [20] can be defined according the 

Tafel equation as follows: 

                   
                    

  
  

  2  2  exp 0.5                            

(16) 

The equation (16) is also applicable for the 

anode by replacing 2O  by 2H  and catbyan. 

Where 
,o ani is the exchange current density 

for reaction (Am
-2

),
2OX ,

2HX , is the actual 

concentration of oxygen and hydrogen 

respectively and 
2O oX 

, 
2H oX 

 are reference 

concentration of oxygen in air and hydrogen 

in fuel , and e  is the electronic potential 

(V), Sa is specific surface area (m
2
m

-3
). 

The consumption term can be calculated as 

follows: 

        
       

  
(Oxygen reduction)        (17) 

       
      

  
(Hydrogenoxidation)     (18) 

        
       

  
(Water formation)    (19) 

The exchange current density for the reaction 

can be computed as follows: 

 

            
   

    
 

    

    
         

   
  

  (20) 

           
   

    
  

    

    
 
 

    
        

   
   

                                                      (21) 

Equation (20), (21) were used in several 

papers [21, 22, 23]. 

 In the electrolyte, the reaction term Q is 

eliminated and equation (15) can be used for 

electrolyte: 

The electronic conduction at the two 

electrodes is defined as follows: 

                    (22) 

And for anode ,cat is replaced by an; the 

momentum equation for flow in porous 

media, Darcy’s law will be used, which states 

that the velocity vector is determined by the 

pressure gradient, the fluid viscosity and the 

structure of the porous media as follows: 

 

    
  

 
    (23) 

The Darcy’s law application mode combines 

with continuity equation and equation of 

state for ideal gas to obtain the following 

equation 

     
    

    
       (24) 

The permeability (
pK ) of the porous media 

can be calculated as shown by [24] as 

follows: 

    
  

               
  (25) 

3.1 Boundary Conditions  
Both of Dirchlit and Neumann boundary 

conditions at different physics mode will be 

used in this study as following; Darcy’s law 

boundary conditions 

                       (26) 

 
  

 
       (27) 

An impervious or symmetric boundary 

condition  

And equation (27) can be used for specific 

flow perpendicular to the boundary by 

substituting the RHS of the equation by 0u  

3.2 Maxwell-Stefan equation 

boundary conditions 
                             (28) 
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        +     =   (29) 

For given flux; and equation (23) can be 

used for insulation/symmetry by eliminating 

iR  

                          
  

 
   

   

    

 
 )                                                     (30) 

For convective flow 

Conductive media DC application boundary 

conditions 

         For inward current flow(31)  

           For electric insulation/no 

current across the boundary                (32) 

     For electric-potential              (33) 
 

4. Results and Discussion  
In the proposed work, two layers feed 

forward neural network with five nodes in 

hidden layer were employed. Levenberg-

Marquardt learning algorithm was used to 

adjust the network weights provided 19 

sampled data with 60% of samples used for 

training, 20% for testing and 20% for 

validation. The designed feed forward neural 

network has one input node representing 

current density (mA / cm
2
) and one output 

node representing voltage. 

The proposed NN model was applied to 

SOFC considering one input (current) and 

one output which is the voltage. Training 

process provides a high learning capability 

with an acceptable  ability to model the  

SOFCsystem as shown below through Table 

1, and  figures 1- 4for cell operating 

temperatures 750 
o
C, and 800 

o
C 

respectively. 
Table 1: MSE of SOFC at different temperatures 

for both numerical and neural models. 

MSE Numerical Neural 

Voltage at 750 
o
C 0.00053 0.000064 

Voltage at 800 
o
C 0.000916 0.000096 

 

The best-fit line that can correlate the 

experimental data to the ANN model data has 

correlation factor          at      and 

         at      

respectively.Theselines are plotted below in 

figures 5-6. 

 

Fig. 1:Numerical profile compared to NN model 

and experimental model of SOFC voltage at 750 
o
C. 

 

Fig. 2: Numerical profile error compared to NN 

model of SOFC voltage at 750 
o
C. 

 

 
Fig. 3: Numerical profile compared to NN model 

and experimental model of SOFC voltage at 800 
o
C. 
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Fig. 4: Numerical profile error compared to NN 

model of SOFC voltage at 800 
o
C. 

 
Fig. 5: Best-fit line between Numerical data and 

ANN model at 750 
o
C. 

Fig. 6: Best-fit line between Numerical data and 

ANN model at 800 
o
C. 

It is observed that the proposed NN with 

Levenberg-Marquardt learning algorithm 

behaves very well in modeling SOFC at the 

two temperatures compared to the measured 

experimental data. Modeling SOFC using 

suggested Numerical model using FEMLAB 

3.1 commercial software showed acceptable 

performance compared to the experimental 

data. 

The deviation between numerical data and 

experimental data was due to considering the 

temperature is constant inside the SOFC. 
 

5. Conclusions 
Two layers feed forward neural network was 

examined for the purpose of modeling the 

Solid Oxide Fuel Cell (SOFC) to test the 

reliability of a two dimensional numerical 

model of SOFC. 

The proposed NN model usingLevenberg-

Marquardt learning algorithm showed high 

performance in modeling SOFC. However, 

the suggested numerical model using 

FEMLAB 3.1 commercial software 

demonstrated acceptable performance in 

modeling SOFC and to increase the 

performance of this model, it is important to 

consider the energy equation for the SOFC.    
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