Mansoura Bulletin Vo?, 10, No, 1, Jwh#s 2707 . T

THE CLOZE PROCEDURE AS A MEASURE
OF PROGRAM UNDERSTANDING

BY

* oo
Ibrahim F. Eissa AND Said. M. Selim

ABSTRACT

The process of program understanding plays an im-
portant role in testing, and maintenance phases of scft-
ware life cycle. There have been numerous investiga-
tions of the influence of various aspects of a program
on program understanding, using many different measures
of understanding. Some of the different measures inc-
lude time to find a bug, a comprehension quiz, ability
to reporduce a functionally eguivalent program without
notes, time to perform modification. All of these mea-
sures have some limitations.

A new measure called CLOZE procedure, which has
less limitations as well as other advantages such as
ease of administration and grading, is investigated in
this paper.

The paper reports on a controlled experiment that
compared CLOZE procedure and the time to find a bug as
measuring program understanding.

The experiment results indicated that the CLOZE
procedure measure is a fair measure for program under-
standing. It may best be used in educational environ-
ments where computerizing test construction, as well as
grading, is highly appreciated.

1. Introduction

The process of program understanding plays an im-
portant role in testing and maintenance phases of the
software life cycle. If one cannot understand a pro-
gram, how can he expect to test and maintain it? Soft-
ware testing and maintenance phases constitute 45% of
the total cost of the software development process [Zj.

* & ** Tnstitute of Statistical Studies and Research,
Cairc University, Egypt.

E. 30 I. P, EISSA & S, ¥, SELIE

Therefore, identifying any factors that contribute to
decreasing this cost is ecconomically sound.

There have been numerous investigations of the
influence of various aspects of a program on program
understanding. A partial list of these includes: mod-
ularization [14], comments [14,11], indenting [2], str-
uctured conding [8], mnemonic variable names [3], pro-
gram length [3], flowcharts [13], documentation tlQ],
and control flow [12]. Almost all of these investiga-
tions involved controlled experimentations.

During experimentation, some sort of a measure is
required to evaluate the degree of program understand-
ing. A wide variety of program understanding measures
were used in such investigations: comprehension quiz
[11, 1{], time to perform a modification f2|, time to
locate a bug [Z], Halstead's E (programming effort)
[6] . and reproduction of functionally egquivalent prog-
ram without notes [3].

All of these measures have limitations such as
inability to measure both low-and high-level understa-
nding, difficulty of administering and objectively gra-
ding {1]. Due to these limitations, Cook [1] proposed
a new measures; the CLOZE procedure measure. The word
"CLOZE" refers to the human tendency to complete a
familiar but not quite finished pattern. Cook inves-
tigated the use of the CLOZE procedure as a measure of
program understanding and compared it to the comprehen-
sive quiz [1]. His results showed that the scores of
both measures were identical.

It is well-known that test construction is an
onerous task for instructors. Cook [1] indicated that
the CLOZE procedure allecviates not only test construc-
tion but alsc the grading burden; both can be computer-
ized. Due to these reasons, the authors were motivated
to carry a further investigation for the CLOZE proced-
ure measure.

This paper reports on a controlled experiment that
compared the CLOZE procedure and debugging task (time
to locate bug) as measuring program understanding. In
a CLOZE procedure, the subjects are presented a program
listing with some of the program tokens {(operands, ope-
rators, reserved words, single parenthesis or brackets,
etc.) replaced with blanks and are required to fill in
the blanks. Our choice for the debugging tasks is pro-
bably the most realistic choice. This is due to the
fact that debugging is a natural activity in software
life cycle.

E -

Mansoura Bulletin Vol, 10, No, 1, June 3087 e

In the remaining sections, we describe the experi-
ment we conducted and analyze its results,

2. The Experiment: CLOZE Procedure vs, Debugging Task

2,1 Subjects and Experiment Objectives

The subjects were students who had two semester
courses in PASCAL and one semester course in FORTRAN,
There were 96 students tested, voluntarily, to measure
their ability to comprehend programs written in FORTRAN,
All the students were at the same academic level; junior
computer science.

The experimental objective was to compare the
CLOZE measure vs. the debug task; alsc, to study the
effect of bug type on the time to locate the bug.

2.2 Meterial

Two FORTRAN Programs with the same complexity,
according to McCabe complexity measure [9], were used.
The first program is a crosstabulation program (TABL).
The other program (STAT) is to calculate the totals,
averages, minima, and maxima values of a set of obser-
vations. The correct programs listing are shown in
Appendix A, Pages Al and A2.

Two forms for each program were used in experimen-
tation: a CLOZE form and a debug form. The CLOZE form
of each program had 6 missing tokens, shown on pages A3
and A4. The debug forms were exactly the correct pro-
gram text, with only a single bug in it.

To measure the effect of bug type on the time to
locate it, three tyvpes of bugs were chosen: Assignment,
Iteration, and Control. This choice was influenced by
the basic components of structured control structure |4
It should be noted that the missing tokens in
the CLOZE forms were selected on the same basis. In-
deed, the tokens have been selected to reflect and
include the chosen bugs.

Having chosen the bugs this way, we were faced by,
the problem of whether to include more than one bug in
the debug form or not. The inclusion of more than one
bug has the serious drawback of possibly confusing the
students when deciding which bug caused the error in
the preogram. Therefore, the decision was made to inc-
lude only a single bug in each debug form, ending with 3
variations of that form for each program. This is to

Eo 32 I. F‘. EISSJ‘. & S. ﬁ:. SELIIE

keep the reflection of bug type on the debug time, The
selected bugs are shown with the program listings, pages
Al and A2. During experimentation, the bugs replaced
their correct version.

2.3 Procedure

The experiment was conducted for all subjects at
the same time., Each subject was asked to answer a pa-
ckage of two parts: a CLOZE part and a debug part.

The CLOZE part consisted of a CLOZE form of either
program proceded by a description of the CLOZE procedure
and illustrative example. The debug part consisted of
one of the three variations of the other program's debug
forms. Both forms in each part were proceded by a com-
plete documentation and a sample input, together with
its correct output. The aim was that the subject would
use this information to locate the bug or to fill in
the missing tokens.

The ordering of forms within the distributed pac-
kages was arranged so that:

a. Half the students answered the CLOZE part first
followed by the debug part. The other half answer-
ed in the reverse order.

b. For each form (or variation of a form), half of its
distributed numbers was answered first; the other
was answered next,

Due to this ordering, we ended up with 12 different
(order-wise) packages as Table A illustrates. Appendix
B includes one of those packages. During experimenta-
tion, the test materials were distributed randomly.

The aim of this ordering process was to eliminate the
mental exhaustion phenomenon from being an effective
factor in the experiment,

The time allocated for each part was 20 minutes.
Students were told to raise their hands when thinking
that they found the bug and they would be notified
whether or not they found the right bug. If not, and
there was more left, they resumed again. There was
no mention about either the type or the place of the
bug.

Manscura Bulletin Vol, 10, No, 1, June 1°8% -

TABLE A

TABL Forms STAT Forms

Packages CLOZE (1 [2 |3 | CLOZE! 1| 2| 3

1 a b

2 a b

3 a b
4 b a

5 b a

6 b a
7 b a

8 b a

9 b a

10 a b
11 a b

12 a b

- a means answered first, follwed by b {on
the same line).

- Each non-empty cell of the table represents
8 students.

3. Results and Its Analysis

The results of the experiment are summarized in
Table 1-7., Tables 1-5 are the raw data; Tables 6 and 7
are deduced from Tables 1-5, 1In the tables, I means
iteration, C means Conditiona, and A means Assignment.

3.1 Comparing the Two Measures

Table 2 of the TABL program shows that the number
of students who scored in the CLOZE form was 49, among
those only 13 found the bug in the debug form. The
corresponding numbers for the STAT program were 47 and
14, respectively (Table 4). This contrast in numbers
indicates a difference between the two measures. This
raises the following guestions: Why this difference?
Is it total or partial difference?

Of course, the real and concrete answer to these
gquestions is beyond the limitations of a single experi-
ment; too much experimentation is required to have a
solid answer. However, within the limited results of
our experiment, we related this difference to the fact
that in the debug measure, the students were positioned
in a black or white situation. Their answers werc
either zero or full mark; and there was no credit for
any partial effort.

EO 34 Io F. EISSI‘L 8: S. N.r. SELII‘I’!

TABL Program Results

Bug No. of Correct T3 Avr,
ime :
Type Angswers Time
I 6 14,6,12,15,14,16 | 12.83
C 4 13,21,15,11 15.06T
A 3 19,17,22 19,33
Table-1. Debug Scores.

Subject No. of Avr.
Classification | Subjects Scores (out ar 6) Score
Fourd the Bug 13 6,4,4,3,4,6,4,5,6,3,3,5,6 4,54
Did Not Pind 36 3,0,5,3,4,5,4,5,1,6,3,3,5,6,4,5,[3.97
the Bug 2,5,2,4,6,3,3,5,4,5,4,4,3,6,6,3,

3 6' 2'4
Table-2., Cloze Scores.
STAT-Program Results
Bug No. of Correct Time Ayr.
Type Answers Time
%ﬁ% I 7 9,7,13,10,12,14,8 | 10.43
C 3 14,17,15 15.33
A 4 18,20,16,18 18.00
Table-3. Debug Scores.

Subject No. of v .
Classification | Subjects|>cores fout of 6) Scare
Found the Bug 14 5,4,3,6,2,3,5,6,4,6,2,5,2,4 4.07
Did Not Fird 33 2,3,2,4,3,6,2,3,5,0,4,3,1,4,5,0,5/3 48
the Bug 1,4,5,5,5,4,3,6,2,3,4,5,4,2,6,4

Tabble-4., Cloze Scores.

Mansoura Bulletin Vol, 10, No, 1, June 1°¢

ne
=S

TABL 5TaAT

Token How Many Token How Many
Type Times Missed | Type Times Missed
I 10 A 17

A 8 I 6

C 11 C 21

A 24 I 18

C 24 C 4

A 27 C 19

Table-5.
- Missed tokens are those which have not been filled or

wrong,

Token Token How Many Average
Type Count Times Missed rag
I 3 34 11.3
C 5 79 15.8
A 4 76 19.0

I
Table-6. {is an aggrigation of Table-=5.)

The idea behind this table is that the larger the num-
ber of a missing token the longer time it would take if
it were filled correctly. Therefcore the average column
represents time.

Bug Average Total
Type TABL STAT Average
I 12.83 10.43 11.63
C 15,00 15.33 15.17
A 19.33 18.00 18.67
Table-7. (constructed from Tables 1 and 2.)

E. 36 I, F. EISS: & S. M. SELLY

A second reason is that the students who found the
bug may be better than those who did not. Indeed, this
turned out to be true from the following:

a. From Tables 2 and 4, we can see that the average
CLOZE score for the students who found the bug is
higher than for those who did not,

b. Nevertheless, this average is still higher if we
compare the students who found the bug vs. the
total number of students {those who found the bug
and those who did not). This is shown in the
following table:

TABLE B
Average CLOSE Score
Program
LABL STAT
Student found bug 5.54 4.07
Total number of
students 4.12 3.66

Having justified the difference, a similarity
between the two measures can be seen by comparing the
last columns in Tables 6 and 7. Here the two measures
agree that the Iteration bugs are the easiest to locate
and the Assignment bugs are the most difficult. 1In
between lies the Conditional bugs. However, this simi-
larity by no means implies total similarity.

3.2 The CLOZE Procedure as Stand Alone Measure

The analysis of the results indicated a fair degree
of subjectivity in using the CLOZE procedure as a
measure of program understanding for the following
reasons:

a. Distribution of Students:

Figure 1 shows the distribution of the 96 students
against the CLOZE scores. Using the method of normal
approximation [5], the percentage of students whose
scores are witnin one standard deviation (SD) is 65.62%,
and within two SD is 96.87%. The corresponding figures
for the proper normal curve are 68% and 9%5%. Therefore,
it is clear that the distribution of the students is
nearly normal.

liansoura Bulletin Vol, 10, Yo, 1, June 1035 o007

b, The CLOZE measure over different programs:

The fairness ©of the CLOZE measure over different
programs is also justifiable. This is clear by work-
ing out the relative difference in CLOZE score averages
for our two programs. From Table B these are:

For TABL: 100 (4,54 - 4.12)/4.54
For STAT: 100 (4.07 - 3.66)/4.12

which are very close figures.

9.25%
10.07¢%

il

il

4. Comments and Conclusion

It has been noticed during experimentation that
the allowable time (20 minutes) was enough for the
CLOZE part. However, there was frustration for more
time in the debug part. Had this time extension been
allowed would the results have been different? Of
course, the answer needs further investigatiocn,

The analysis of the results showed some differences
as well as similarities between the two measures. Also,
it showed the fairness of the CLOZE procedure measure
as a stand alone measure. Consequently, the authors
feel that the CLOZE measure may be best used in educa-
tional environments. This serves twofold: first, cre-
diting any partial effort; secondly, by computerizing
the process of test construction and grading, the bur-
den on instructors will be decreased.

Both measures indicated that the Assignment bugs
are the most difficult to locate while the iteration is
the easiest; in between lies the Conditional. Whether
this is true or not again needs further experimentation.

Almost all experimental measures proposed in the
literature provide a measure for program understanding
to some extent. But, the answers to the following gque-
stions are not clear:

. What are the criteriafoar selecting an exXperime-
ntal measure for program understanding?

. What are the types of questions to be included
in the testing method?

These questions need further investigation; they are
open research problems in literature.

E. 38 I, P. FISS5A & 3, M, SELIC

of
Students

3

3

11
14
24
20
16

No.

ade
0
1
P
3
4
5
6

30
20

of
Students

No.

10

grade

Mangoura Bulietin Vel, 1l¢, Ne, 1, June 1"£5 E.

REFERENCES

(1]

(2]

(3]

[4]

REV

Cook, C.W. Breger, and D. Foote. A preliminary
investigation of the use of the CLOZE procedure as
a measure of program understanding. Information
Processing and Management (1984), vol. 20, 199-208.

Curtis, B., S. B. Sheppard, and P. Milliman, Third
Time charm: Stronger replication of the ability of
software complexity metrics to predict programmer
performance. Proceedings of Fourth International
Conference on Software Engineering, Munich,
Germany (September, 1979), 356-360,

Curtis, B., S. B. Sheppard, P. Milliman, M.A.
Borst, and T, Love. Measuring the psychological
complexity of software maintenance tasks with
Halsted and MacCabe metrics. IEEE Trans, Software
Eng., Vol. SE-5 (1979), 96-104.

Dijkstra, E. W, Notes on structured programming,
in Structured Programming by Dahl, Dijkstra, and
Hoane. Academic Press, N.Y., 1072.

Freedman, D., R. Pisani, and R. Purves. Statistics,
Chapter 5. Norton, New York, 1978.

Gordon, R. Measuring improvements in program cla-
rity. TIEEE Trans. Software Eng., Vol. SE05 (1979},
79-90.

Lewis. T. Software engineering analysis and veri-
fication. Reston Publishing Company, Inc., 1982,

Love, T. An experimental investigation of the
effects of program structure on program understan-
ding. ACM SIGPLAN Notices, 10 (March, 1977, 105-113,

McCabe, T. J. A complexity measur<. IEEE Trans.
Software Eng., Vol. SE-2 (1976), 308-320.

Sheppard, 5. B., E. Kruesi, and B. Curtis. The
effects of symbology and Spatial arrangement on
the comprehension of software specifications.
Proceedings of Fifth Internaicnal Conference on
Software Engineering, San Diegqgo, California (March,
1981), 207-214,

Sheppard, S. B., M. A. Borst, and B. Curtis, Pre-
dicting programmer ability to understand and modi-
fy software. Proceedings of Symposium on llumman
Factors and Computer Science., Washington, D.C.
(June, 1978),115-135.

E. 40 TI. ¥, EISSA & S, M. SELIM

(1]

[13]

[14]

Shneiderman, B. Control flow and data structures
documentation: Two experiments. Comm. ACM, 25
(1982); 56_63.

Shneiderman, B., R. Mayer, D. McKay, and P. Heller,
Experimental investigation of the utility of deta-
iled flowcharts in programming. Comm, ACM, 20
(1977), 373-381.

Woodfield, 5. N., and H. E. Dunsmore. The effect
of modularization and comments on program COmMPre-
hension. Proceedings of Fifth International Con-
ference on Software Engineering, San Diego, Cali-
fornia (1981), 215-223.

Hansoura Bulletin Veol., 10, No, 1, Juns 1780 A

Appendix-A

PROGRAM TABL (INPUT,OUTPUT,TAPES=0QUTPUT)}
INTEGER AGE,W,A
DIMENSION A{(5,6),W(30) ,AGE(30)
READ({*,100) (AGE(I),I=1,30)
READ(*,100)} (W(I),I=1,30)
100 FORMAT(3012)
WRITE(5,101} (AGE(I),I=1,30)
WRITE{5,101) {(W{I),I=1,30)
101 FORMAT{3013)

Ia=4 BUGS
IW=5
N=TA+1
M=TW+1
DO 1 I=1,N
DO 1 J=1,M

1 A{I,J)=0
DO 10 K=1,30 DO 10 K=1,15
IF(AGE(K) .LE. 0}AGE(K)=1 IF (AGE(K}) .GE.15)AGF{K)=16
IF (AGE(K) .GT. 15)AGE(K)=16 I=((AGE(K)+1) /5)+]
I=((AGE(K) -1) /5) +1
IF(W(K) .LT. 20)W{K)=20
IF(W(K) .GT. 60)W(K)=60
J=(W({K)/10)} -1
A(I,J)=A(I,J)+1
A(N,J)=A(N,J)+1
A(I,M)=A(I,M)+1

10 A(N,M)=A(N,M)+1
po 15 I=1,N

15 WRITE(5,101) (A(I,J),J=1,M)
STOP
END

-1 ¢ 1 3 4 3 5 2 6 7 7 8 8 9 9 101014 11 121513 15 16 20

16 19 17 20 18
29 1 30 40 41 50 52 60 2 3 31 32 41 43 55 54 61 9 35 327 44 56 62 7 38

49 57 59 60 45

21 2 2 1 8
2 2 2 2 1 9
1 21 1 1 6
11 2 2 1 7
6 6 7 7 4 30

TABL Correct Listing and Bugs

E, 42 T, ¥, EISSA & S, ', SELTV

PROGRAM STAT (INPUT,QUTPUT, TAPE1=0UTPUT)
INTEGER S,SCNT
DIMENSION A({15),S(5),TOTAL(3),AVER(3),VMIN(3) ,VMAX{3)
READ (*,100) (A(1),I=1,15)
READ{*,101} (S(I),I=1,5)
100 FORMAT(15F3.1)
101 FORMAT (5T 2)
WRITE(1,101) (S(1),I=1,5
WRITE(1,102) (A(I),I=1,15)
102 FORMAT{15F4.1) BUGS
NvV=3
NO=5
DO 1 K=1,NV
TOTAL (K)=0.0
AVER(K)=0.0

VMIN (K)=1,0E10 VMIN(K)=-11.0E10
1 VMAX(K)=- 1.0E10 VMAX (K)=1.0E10
SCNT=0
DO 7 J=1,NO DO 7 J=1,NV
1J=J ~NO
IF(S(J) .EQ. 0} GO TO 7 IF(S{J} .EQ. O) GO TP &

SCNT=SCNT+1
DO 6 I=1,NV
IJ=IJ+NO
TQTAL{I)=TOTAL(I)+A(I.J)
IF(A(IJ) .LT. VMIN{(I))VMIN(I)=A(IJ)
IF(A(IJ) .GT. VMAX(I))VMAX{1)=A(IJ)
6 CONTINUE
7 CONTINUE
IF (SCNT .EQ. 0) GO TO 13
DO 10 I=1,NV
10 AVER(I)=TOTAL(I)/SCNT
15 Do 20 1=1,3
20 WRITE(1,103(TOTALI(I) ,AVER(I),VMIK(I},VMAX(I)
103 FORMAT (4F6.1)
STOP
END

5.0 7.0 8.5 5,5 7.5 9.5 6.0 8.0 9.5

T
L B o o»
Ea] = O

=

nNno oo

o I =
ooy Lt ~Jun
Y 0w n
oo
W aomon®

.0
.5
.5
.5

~] U1 &N

STAT Correct Listing and Bugs

Fangoura Bulletin Ve¢l, 10, No. 1, June 1775 1,

PROGRAM TABL (INPUT,QUTPUT, TAPES=0UTPUT)
INTEGER AGE,W,A
DIMENSION A{5,6),W(30),AGE(30)
READ (*,100) (AGE(I),I=1,30)
READ(*,100) (W(I),I=1,30}

100 FORMAT{3012)
WRITE(5,101) {(AGE(I),I=1,30)
WRITE(5,101) (wW{I),I=1,30)

101 FORMAT(2013)
IA=4
IW=5
N=IA+1
M=TIW+1
Do 1 I=1,N
DO 1 J=I,M

1 A(I,J}=0

DO 10 K=1, __

IF(AGE(K) .LE. 0}AGE(K)= __
IF (AGE(K) __ 15)AGE(K)=16
I= ((AGE(K) ______ 1) /5)+1
IF(W(K}) .LT. 20)W(K)=20

IF(W(K) __ 60)YW(K)=60

J= (W (K) /10} 1

A{I,J)=A(I,J)+1
A(N,J)=A(N,J}+1
A(I,M)=A(TI,M) +1

10 A(N,M)=A(N,M)+1
DO 15 I=1,N

15 WRITE(5,101) (A(I,J),J=1,M)
STOP
END

TABL, CLOZE form

BE. 44 I. P. EISSA & S. K. SELIM

PROGRAM STAT{INPUT,QUTPUT,TABLE 1=0UTPUT)
INTEGER S,SCNT
DIMENSION A{(15),S8(5),TOTAL(3),AVER(3),VMIN(3),VMAX{3)
READ(*,100) (A({(I),I=1,15)
READ(*,101) (S(I),I=1,5}
100 FORMAT(15F3.1)
101 FORMAT(5I2)
WRITE(1,101) (S(1),I=1,5)
WRITE(1,102) (A(I),I=1,15)
102 FORMAT(15F4.1)
Nv=3
NO=5
DO 1 K=1,NV
TOTAL(K)=0.0
AVER (K)=0.0
VMIN(K)=1.0E10
1 vMAX({K)=
SCNT=0
Do 7 J=1,
IJ=J-NO
IF(S(J) .EQ. 0} GO TO
SCNT=SCNT+1

DO 6 I=______
IJ=IJ+NO
TOTAL (I)=TOTAL(I)+A{(IJ)
IF(A(IJ) ______ VMIN(I))VMIN(I)=A(1J)
IF(A(IJ) . GT. VMAX(I))VMAX(I)=A{IJ)
6 CONTINUE
7 CONTINUE
IF (SCNT 0) GO TO 15

10 AVER(I)=TQTAL(I)/SCNT
15 DO 20 I=1,3
30 WRITE(1,103) TQTAL(I),AVER(I),VMIN(I) ,VMAX(T)
103 FORMAT (4F6.1)
STOP
END

STAT CLOZE form

-

Mansoura Bulletin Vol, 1€, ¥o, 1, Jure 105% Te A7

Appendix B
READ THIS ONLY

1. DO NOT EXAMINE THE OTHER PAGES OF THIS HANDOUT
UNTIL INSTRUCTED TO DO S50.

2. THIS IS AN EXPERIMENT ONLY, A SERIOUS EFFORT IS
EXPECTED. YOQUR PERFORMANCE WILL NOT AFFECT YOUR
GRADE WHATSOQEVER.

3. YOUR PARTICIPATION IN THIS EXPERIMENT IS VOQLUNTARY.
YOU ARE FREE TO WITHDRAW AT ANY TIME.

For this experiment there is a practice prcblem
followed by the actual problem. The practic problem
is to acquaint you with the testing procedure being
used in this experiment. After completing the practice
problem do the actual problem,

PRACTICE PROBLEM

A token is a simple variable identifier, an array
identifier, a procedure or function name, a subcript,
a constant or an operator {lcgical or arithmetic).
Certain of the tokens in the following pascal program
have been deleted and replaced with an underline. Your
task is to fill in the delated tckens.

PROGRAM GCD (INPUT,OQUTPUT, TAPEl = OUTPUT)
INTEGER R,M,N
READ (*,100) M, N

100 FORMAT (213)
50 R=M=- (M/ ———=~— } * N
M =N
______ = R
IF(R-__ 0) O TO
WRITE (1,101) M
101 FORMAT (' GREATEST COMMON DIVISOR IS’,I3)
STOP
END

50 you can compare you answer, the program with
the correct answers appears on the next page.

PROGRAM GCD (INPUT, OQUTPUT, TAPEl = QUTPUT)
INTEGER R,M,N
READ(*,1000) M, N

100 FORMAT (2I3)

50 R=M- (M/ N} *N
M =N
N =R

IF (R .GT. 0) GO TO 50
WRITE (1,101) M
101 FORMAT (' GREATEST COMMON DIVISOR 1S’', 13)
STOP
END

On the following page is theactual problem. You
are to fill in the missing tokens the best you can.
You will have a maximum of 20 minutes to complete this
part of the experiment.

NOTE: The program is preceded by its description.

Mansoura Bulletin Vol, 10, Yo, 1, Juns 775 T 4

DOCUMENTATION
Purpose ¢f Program:

To corss tabulate the age against the weight.
That is the number of subjects in each age and weight
interval.

Data:

AGE(30) is input vector containing ages
W(30) is input vector containing weights

A(5,6) is output matrix contains the results of
cross tabulations

The four age intervals are:
age <= 5, 5 < age = 10, 10 <age <= 15, age> 15

The five weight intervals are:

Weight < 30 , 30 <=weight<40 , 40 <= weight - 50,
50 <= weight <60, weight >= €0,

INPUT DATA

-100010304030502060707080809091010141112151351620816191720
2901304015052600203313241435554610935374456620738454957960

CORRLECT OUTPRUT

WET T
<30 (30<=W 40 | 40<=W<50 | 50<=W-60 | W>=60 | TOTAL
AGE

A <=5 2 1 2 2 1 8
5<p<=10 2 2 2 2 1 9
10<A<=15 1 2 1 1 1 8
A > 15 1 1 2 2 1 7
TOTAL 6 6 7 7 4 30 B

E. 48 I. ¥, EI30A & S, ', SELIIL

PROGRAM TABLE (INPUT, OUTPUT, TAPES=QUTPUT)
INTEGER AGE,W,A
DIMENSION A(S5,6),W{(30),AGE(30)
READ(*,100) (AGE(I), 1I=1,30)
READ (*,100) (wW(I),TI=1,30)

100 FORMAT(30I2)
WRITE (5,101) (AGE(I),I=1,30)
WRITE (5,101) (W(I)},I=1,30)

101 FORMAT (3013)
Ia=4
XW=5
N=TA+1
M=W+1
DO 1 I=1,N
DO 1 J=1,M

1 A{I!J)=O

DO 10 K=1, __
IF (AGE(K) .LE. 0)EGE(k)= ______
IF (AGE(K) 15)}AGE (K)=16

= ((AGE(K) ___ .~ 1) /5+1
IF(W(K) .LT. 20)W (K)=20
IF (W(K) 60)W(K)=60

J=(W(K)/10) ______ 1
A{I,J)=A(I,J)+1
A(N,J)=A(N,])+1
A(I,M)=A{I,M)+1

10 A(N:M)zA(NrM)"'l
DO 15 I=1,N

15 WRITE(5,101) (A{(1,J)}, J=1,M)
STOP
END

VMansgoura Bulletin Vol, 16, No. 1, June i7wk

READ THIS ONLY

1. DO NOT EXAMINE THE OTHER PAGES OF THIS HANDOUOT
UNTIL INSTRUCTED TO DO SO.

2. THIS 1S AN EXPERIMENT ONLY, A SERIOUS EFFORT IS
EXPECTED. YOUR PERFORMANCE WILL NOT AFFECT YOUR
GRADE WHATSOEVER.

3. YOUR PARTICIPATION IN THIS EXPERIMENTS IS5 VOLUNTARY.
YOU ARE FREE TO WITHDRAW AT ANY TIME.

INSTRUCTIONS

On the next two pages is a program and its output
proceded by its documentation. The documentation
includes a description of the program and the correct
output for set of input data. The program contains a
single error. So the output following the program
listing is incorrect for the input data.

Your task is to find the error in the program.
When you think you have found the error, raise your
hand. A proctor will tell you whether or not your
have discovered the error. If you have discovered the
error, then correct the error on the program listing.
If not, you should continue to look for the error.

You have 20 minutes to complete this part of
the experimant.

E, 50 I, P, EI3SA & S, ity BELIK
DOCUMENTATION

Purpose of program:

To claculate the total, average, minimum and

maximum values of a set of observations,
Data:

NO is number of observations

NV is number of variables per observation

A(l),...,A(NO) first variable in all observations
A(NO+1}),...,A(2*NO) second variable in all obser-

vations

A(2*NO+1),...,A(3*NO) third variable in all obser-

vations
etc

S(1),....,8{(NO) input vector indicating which
observations are to be considered in the calcula-
tions. Only observations with a non zero B(J)}

value will be considered.
TOTAL(1),...,TOTAL{NV) hold totals for
AVER(1l),...,AVER(NV) hold averages for
VMAX(1l},...,VMAX(NV) hold maximums for

VMIN(1),...,VMIN(VN) hold minimums for

INPUT DATA (NO=5,NV=3)

4.06.07.54.56,.58,05.07.08,.55,57.59,59,59.08,

0102000405
CORRECT OUTPUT

VARTIABLE TOTAL AVERAGE VMIN

21.0

1
2 27.0
3 34.0

oo hoon
L] L]
[n2 W & o TN V)

each
each
each

each

09.5

variable
variable
variable

variable

Mansoura Bulle*in Vol. 10, No, 1, June 170% Tie

PROGRAM STAT(INPUT,QUTPUT, TAPEI=0UTPUT}
INTEGER S,SCNT
DIMENSION A(15),5(5),TOTAL(3) ,AVER(3),VMIN{3},VMAX(3)
READ({*,100) (A{(I),I=1,15)
READ(*,101) (S(I),I=1,5)
100 FORMAT{15F3;1)
101 FORMAT(5I2)
WRITE(1,101) (s(1I),I=1,5)
WRITE(1,102) (A(1},I=1,15)
102 FORMAT(15F4.1)
Nv=3
ND=5
DO 1 K=1,NV
TOTAL (K)}=0.0
AVER(K)=0.0
VMIN{K)=1.0E10
1 VMAX({K)=- 1.0El0D
SCNT=0
DO 7 J=1,NO
IJ=J-NO
IF(S(J) .EQ. 0) GO TO 5
SCNT=SCNT+1
5 DO 6 I=1,NV
IJ=T1J+NO
TOTAL (I)=TOTAL(I)+A(IJ)
IF(A(IJ} ,LT. VMIN(I))VMIX(I}=A(IJ)
IF(A(IJ) .GT. VMAX{(I))VMIX{(I)=A(IJ)
6 CONTINUE
7 CONTINUE
IF(SCNT .EQ. 0) GO TO 15
DO 10 I=1,NV
10 AVER(I)=TOTAL({I)/SCNT
15 DO 20 I=1,3
20 WRITE(1,103) TOTAL(I},AVER(I),VMIN(I),VMAXI(T)
STOP
END

5.0 7.0 B8.55.5 7.5 9.5 6.0 8.0 9.5

