Menofia University

Faculty of Engineering Shebien El-kom Basic Engineering Sci. Department.

First semester Examination, 2014-2015

Date of Exam: 17 /1/2015



Subject: Int. Partial Diff. Eqs.

Code: BES 503

Year: Master (Grade 500) Time Allowed: 3 hrs Total Marks: 100 Marks

## Answer the following questions

#### Question 1 (25 marks)

Solve the heat equation:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + x, \qquad 0 < x < 1, \qquad t > 0$$

Where u is the temperature, k is the conductivity of the rod, x is a dimension and t time

Subject to: B.C.s 
$$u(0,t) = 1$$
,  $u(1,t) + \frac{\partial u(1,t)}{\partial x} = 2$  and I.C.  $u(x,0) = x$ 

### Question 2 (25 marks)

Consider waves in a resistant medium that satisfy the problem  $u_{tt} = c^2 u_{xx} - ru_t + 5xe^{-t}$ Where 0 < x < l, t > 0 With Boundary conditions, u(0,t) = 1, u(l,t) = 2 and initial conditions, u(x, 0) = f(x),  $u_t(x, 0) = g(x)$  Where r is a constant,  $0 < r < 2\pi c/l$ . Write down the series expansion of the solution.

### Question 3 (25 marks)

Solve the following 2-dimensional PDE

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{\alpha} \frac{\partial u}{\partial t}, \quad 0 < x < a, \quad 0 < y < b, \quad t > 0$$

Subject to the boundary conditions:

$$\frac{\partial u}{\partial x} = 0 \quad at \quad x = 0, \qquad \frac{\partial u}{\partial x} + H_2 u = 0 \quad at \quad x = a,$$

$$u = 0 \quad at \quad y = 0, \qquad \frac{\partial u}{\partial y} + H_4 u = 0 \quad at \quad y = b,$$

$$u = f(x, y) \quad for \quad t = 0$$

# Question 4 (25 marks)

Solve the following heat equation that describe the heat flow in a non-uniform rod without sources  $c\rho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left( K_o \frac{\partial u}{\partial x} \right)$ , where u represent the temperature and the thermal properties of the rod poss

non-constant. Also, the boundary and initial conditions are

B.C.s 
$$u(0,t) = 0$$
,  $\frac{\partial u(L,t)}{\partial x} = 0$  and I.C.  $u(x,0) = f(x)$ 

|                        | 1                               | This ex | am measure | s the follo | wing ILOs    |                          |
|------------------------|---------------------------------|---------|------------|-------------|--------------|--------------------------|
| <b>Question Number</b> | Q1                              |         |            | Q2          | Q3           | Q4                       |
| Skills                 |                                 |         |            |             |              |                          |
|                        | Knowledge &understanding skills |         |            | Int         | ellectual Sk | dlls Professional Stills |