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ABSTRACT.

In this paper we shall prove the foHom'ng
theoren:"Let E be a Banach space and F C E be a
closed subspace of E such that codin F = dim (E/F)

k < ®, and let g be a strongly non-singular form on E
such that gl F is woak non singular. Then there

exists a k—dimensional vector subspace G orthogonal

complenent to F with respect to g such that gl G is a

weak ncen—-singular form."

1.Definitions.

1.1. By Ln(E; R) we denote ~ the space of all n-linear

. < . n .
continuous functionals :E - R , where E is a Banach space

and R is the set of real numbers, n is a positive integer

1.2. The bilinear form g € LQ(E; R) is saild to be strongly

non-singular ([1]) if
(i) g is svmmetric (i.e. g(x,y) = g(y.x) for every x.v € L)
(1i) g asscciates a mapping

o
et xeEo X =g(s) e LiE: ») = £

e
which is bijective.
g is said to be a weak non—singular if we replaced {(ii) by :

(i1)* If gox. v) =0 for every v ¢ [, then x = 0
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1.3. Let X be a vector space. A linear set H c X is called a
hypersubspace of X if H # X and there exists a vector y € X
such that X is the linear span of H and y ([2]), denoted by
<H, y>. A hyperplane in X is any set of the form x + H where
x € X and H is a hypersubspace in X.([2]).

Theoren
Let E be a Banach space and F c E be 2 closed subspace

of E such that codim F = dim (E/F) = k < ®, and let g be
§§rongly non—singular form on E such that g]F is weak non
singular. Then' there exists a k—dimensional vector subspace
G orthogonal complement to F with respect to g such that g[G

is a weak non-singular form."

Proof
The proof of the theorem is a direct conclusion of the

following three lemmas:

Lemma 1.
" If F is a closed vector subspace of the Banach space E

such that codim F = k < ®, then there exist k—-linear fornms

k
-1 -
RN € (E: R) such that {) a (o) = ¢
i=1
Proof
Let o« ,...,x be the basis of the space E/F. Consider
1 K
e _..e & E such that Ple ) =a_ , 1 = [.2....,k,
. "k i i
where P : E s E/F is the canonical projection.
Let L(e e)=1afe. .2 eRr i=1.....k =G. Then
EREE . i

o BT

we have the direct sum E =G o F, i.e. for every x ¢ [,
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Xx =y +z where vy € G, 2z ¢ F, and this representation is
unique.

To prove this fact, let x e E, P(x) = xiai .

i=1,...,k , y=H%eG,j=L“gk,mde~y.
Then P(z) = P(x) — P(y) = 0, and this implies that z ¢ ¥. To
prove the uniqueness, if 0 = Ajej +z and z € F, then
0= P(AJeJ_) + P(z), i.e. P(xJeJ_) =0 which leads to xJej =0,
and then A’ = 0, j = 1,...,k. It follows that z = 0 i.e. if
O=y+2z ,vye€G, zeF, theny =2z = (.

Since G is k-dimensional subspace of E, then it is
closed. Therefore E = G @ F is a direct sum of closed
subspaces, which implies that the projections F; :E 5 G and

f} : Es F are continuous.

Define the functiohals fi tGsR, 1 =1,...,k,

' . _ 11 if i=j (.. . _ .
where fi(ej) = éij (5if—{ 0 it iz YL 1,...,k. Taking

into account that G is a k-dimensional topological linear
subspace , then f; , 1 = 1l,...,k are continuous. Now
assuning « = fio I& . then a s i = 1,...,k are continuous.
Since fglp = Q, then ai(F) = 0 , therefore for every
i=1,2, ...,k

= ai—l(()) (1.1)

k
Conversely, let xe(]aifl(o), then al(x)=...= ak(x)= 0.
i=1
It foliows that if x = kjej +z, j=1....,8. 2z F and
a (x) = (fo P)(X) = fs(xjej) =2 =0, s=i..... k.

l.e. ¥ =2 ¢ F, then
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k
-1
ﬂ o (o) ¢ F. ; (1.2)
i=1
. i
From (1.1), (1.2) we have that F = {] o« (o).
) i=1

LIMMA 2.
A subspace F of the Banach space E is a hyperplane in

E iff there exists a linear functional « € L E; R, a0
such that F = a~1(0).

Proof.
Let F be a hyperplane in E, then there exists a vector

x ¢ E, x#0 such that F @ <x> = E, then from lemma | when k=l
there exists o € L(E;tR) such that F = o~1(0).

Conversely, let a ¢ L(E; R). « # 0 such that
F= a'l(O) then we have that
(i) Fc E, F £ E, since a ¢ 0,
(ii) F is a linear subspace of E,
(iii) F is closed, since « is continuous and {0} is a closed
subspace of R. then F = q_l(O)is closed in E.

Moreover, since « # 0 then there exists a vector x ¢ E
such that a (x) 2 0. Let a(x) = u # 0 and x; = X/ ,

then o (x3) = 1. '
Now we prove that E =F @ <xp>. Let z € F  <x4>.
then a (z) = a(} X3) =X a(x%g) =1 = 0., »e R, then z = 0.

To prove that E ¢ F @ <xy>,

let z ¢ B, z = ( z - a(z).xy) + a (2).X,. where
a(z) . Xpe{Ny>. since «(z - a(2).%y) = 0. then z —a(z).x; € F.

Hence F = a~1(0) is a hyperplane in E.
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" Lemma 3.

Let g € Lz(E; R) be a Symmetric, strongly non—-singular
bilinear form. Then for every x € E, x # 0,

F = {y € E :g(x,y)=0} ot is a hyperplane in E.
Conversely, if a hyperplane F c E is given,then there exists

a vector x € E, X # 0 such that F = ot

Proof.
If x e E, x # 0, we we take a(x) € L(E; R) such that

for every y € E, ax(y) = g(x, y). Then for every
¥ € <x>l, ax(y) = 0. i.e. ot = a‘l(O), therefore

from lemma 1 we have <O+ is a hyperplane in E.

Now, if F is a hyperplane in E then by lemma 2 there
exists a linear form o € L(E; R) such that F = o1 (0). But
since g is a strongly non—-singular, then there exists x ¢ E
such that for every v € E, ag(y) = g(x. y). Hence

F=o"l(0) = {yek: o =glxy) =0} =<t

Now we are ready to prove the considered theorem.
Suppose E is a Banach space and F ¢ E is a closed subspace
" of E with codim F = k < «. Then by lemmas !, 2 and 3, F can

be. represented in the form
K

F={}<xi>1 such that for every i= I,....k, <xi>'l is a
i=1
hyvperplane in E. we define a set G where
din 6 = k < w, G = <xy,...,Xg>. Now we have to show that

E=0GeF
Suppose that z; € G  F, then z5 € G and z; € F. But from

the definition of G. z; € Pl, then z, = 0. therefore
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G F={0}.
‘For non-singularity of g}G,
such that g(z,x) = 0 for every x € G. This implies that zl G

suppose that z ¢ G

and z € F.

Consequently zeGpF=1{0}, i.e. z =0 and this shows the
non—-singularity of g[G. By construction of a base in G it is
easy to prove that g(ei, ej)= éij for every

i) =1,...,k.([2]).

Finally, it remains to prove that for every z ¢ E,
7z = x +y where x = A’ e, eG, 1=1,...,k, v € F. This

means that we must determine ll,..., A* ¢ R such that
y=2z- Al e € F which is equivaleht to (z - At ei) 1 ej ,
J=1,...,k.
Consequently g( z - ki e ej ) = 0 and g(z, ej) = xj.
k
Therefore, for every z ¢ £, 1z = E g(z, ej).ej + y such
i=1
k .
that z gz, ej).ej ¢ G, y e F which means that £E c G o F
i=1 ‘

and this completes the proof of the theorem.
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