Sci. J. Fac. Sci. Menoufia Univ. Vol. VIII(1994)

ON HYPERPLANES IN BANACH SPACES

El. R. Lashin

Maths. Dept., Faculty of Science, Menoufia University

ABSTRACT.

In this paper we shall prove the following theorem: "Let E be a Banach space and F C E be a closed subspace of E such that codim $F = \dim(E/F) = k < \infty$, and let g be a strongly non-singular form on E such that gl_F is weak non singular. Then there exists a k-dimensional vector subspace G orthogonal complement to F with respect to g such that gl_G is a weak non-singular form."

1.Definitions.

1.1. By $L_n(E; \mathbb{R})$ we denote the space of all n-linear continuous functionals $:\mathbb{E}^n \to \mathbb{R}$, where E is a Banach space and \mathbb{R} is the set of real numbers, n is a positive integer

1.2. The bilinear form $g \in L_2(E; \mathbb{R})$ is said to be strongly non-singular ([1]) if

(i) g is symmetric (i.e. g(x,y) = g(y,x) for every $x,y \in E$) (ii) g associates a mapping

 $g^{\boldsymbol{*}}$: $x \in E \to g^{\boldsymbol{*}}_{X}$ = $g(x,.) \in L(E; \ensuremath{\mathbb{R}})$ = E* which is bijective.

g is said to be a weak non-singular if we replaced (ii) by : (ii)* If g(x, y) = 0 for every $y \in E$, then x = 0

El. R. Lashin

1.3. Let X be a vector space. A linear set $H \subset X$ is called a hypersubspace of X if $H \neq X$ and there exists a vector $y \in X$ such that X is the linear span of H and y ([2]), denoted by $\langle H, y \rangle$. A hyperplane in X is any set of the form x + H where $x \in X$ and H is a hypersubspace in X.([2]).

Theorem

Let E be a Banach space and F c E be a closed subspace of E such that codim $F = \dim (E/F) = k < \infty$, and let g be strongly non-singular form on E such that $g|_F$ is weak non singular. Then there exists a k-dimensional vector subspace G orthogonal complement to F with respect to g such that $g|_G$ is a weak non-singular form."

Proof

The proof of the theorem is a direct conclusion of the following three lemmas:

Lemma 1.

If F is a closed vector subspace of the Banach space E such that codim $F = k < \infty$, then there exist k-linear forms

 $\alpha_1, \ldots, \alpha_k \in L(E; \mathbb{R})$ such that $\bigcap_{i=1}^{k} \alpha_i^{-1}(o) = F$.

Proof.

Let $\alpha_1, \ldots, \alpha_k$ be the basis of the space E/F. Consider $e_1, \ldots, e_k \in E$ such that $P(e_i) = a_i$, $i = 1, 2, \ldots, k$, where $P: E \to E/F$ is the canonical projection. Let $L(e_1, \ldots, e_k) = \{ \lambda^i e_i, \lambda^i \in \mathbb{R}, i = 1, \ldots, k \} = G$. Then we have the direct sum $E = G \oplus F$, i.e. for every $x \in E$,

On Hyperplanes in banach spaces

x = y + z where $y \in G$, $z \in F$, and this representation is unique.

To prove this fact, let $x \in E$, $P(x) = \lambda^i a_i$,

 $i=1,\ldots,k$, $y=\lambda^j e_{j}\in G,\ j=1,\ldots,k$, and z=x-y.Then P(z) = P(x) - P(y) = 0, and this implies that $z \in F$. To prove the uniqueness, if $0 = \lambda J e_i + z$ and $z \in F$, then $0 = P(\lambda^{j}e_{j}) + P(z)$, i.e. $P(\lambda^{j}e_{j}) = 0$ which leads to $\lambda^{j}e_{j} = 0$, and then $\lambda^{j} = 0$, j = 1, ..., k. It follows that z = 0 i.e. if 0 = y + z, $y \in G$, $z \in F$, then y = z = 0.

Since G is k-dimensional subspace of E, then it is closed. Therefore $E = G \oplus F$ is a direct sum of closed subspaces, which implies that the projections $P_G : E \rightarrow G$ and $P_r: E \rightarrow F$ are continuous.

Define the functionals f_{i} : $G \rightarrow \mathbb{R}$, i = 1,...,k, where $f_i(e_j) = \delta_{ij}$ $(\delta_{ij} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases}$, $i, j = 1, \dots, k$. Taking into account that G is a k-dimensional topological linear subspace , then f_i , i = 1, ..., k are continuous. Now assuming $\alpha_i = f_i \circ P_g$, then α_i , i = 1, ..., k are continuous. Since $P_{g|F} = 0$, then $\alpha_{i}(F) = 0$, therefore for every

i = 1, 2, ..., k

$$F \subseteq \alpha_i^{-1}(0) \tag{1.1}$$

Conversely, let $x \in \bigcap_{i=1}^{k} \alpha_{i}^{-1}(0)$, then $\alpha_{1}(x) = \ldots = \alpha_{k}(x) = 0$. It follows that if $x = \lambda^{j}e_{j} + z$, j = 1, ..., k. $z \in F$ and $\alpha_{s}(x) = (f_{s} \circ P_{0})(x) = f_{s}(\lambda^{j}e_{j}) = \lambda^{s} = 0$, s = 1, ..., k. i.e. $x = z \in F$, then

E1. R. Lashin

$$\bigcap_{i=1}^{k} \alpha_{i}^{-1}(0) \subseteq F.$$
(1.2)

(1.2)

(1.2)

(1.2)

From (1.1), (1.2) we have that $F = \iint_{i=1}^{\infty} \alpha_{i}$ (0)

LEMMA 2.

A subspace F of the Banach space E is a hyperplane in E iff there exists a linear functional $\alpha \in L$ (E; R), $\alpha \neq 0$ such that $F = \alpha^{-1}(0)$.

Proof.

Let F be a hyperplane in E, then there exists a vector $x \in E$, $x\neq 0$ such that $F \oplus \langle x \rangle = E$, then from lemma 1 when k=1 there exists $\alpha \in L(E; \mathbb{R})$ such that $F = \alpha^{-1}(0)$.

Conversely, let $\alpha \in L(E; \mathbb{R})$, $\alpha \neq 0$ such that

 $F = \alpha^{-1}(0)$ then we have that

(i) $F \subset E$, $F \neq E$, since $\alpha \neq 0$,

(ii) F is a linear subspace of E,

(iii) F is closed, since α is continuous and $\{0\}$ is a closed subspace of R. then $F = \alpha^{-1}(0)$ is closed in E.

Moreover, since $\alpha \neq 0$ then there exists a vector $x \in E$ such that α (x) $\neq 0$. Let α (x) = $\mu \neq 0$ and $x_0 = x/\mu$,

then $\alpha(x_0) = 1$.

Now we prove that $E = F \oplus \langle x_0 \rangle$. Let $z \in F \cap \langle x_0 \rangle$. then $\alpha(z) = \alpha(\lambda | x_0) = \lambda | \alpha(x_0) = \lambda = 0$, $\lambda \in \mathbb{R}$, then z = 0.

To prove that $E \in F \oplus \langle x_0 \rangle$,

let $z \in E$, $z = (z - \alpha(z).x_0) + \alpha(z).x_0$, where $\alpha(z).x_0 \in \langle x_0 \rangle$. since $\alpha(z - \alpha(z).x_0) = 0$, then $z - \alpha(z).x_0 \in F$. Hence $F = \alpha^{-1}(0)$ is a hyperplane in E. On Hyperplanes in banach spaces

Lemma 3.

Let $g \in L_2(E; \mathbb{R})$ be a symmetric, strongly non-singular bilinear form. Then for every $x \in E$, $x \neq 0$,

 $F = \{y \in E : g(x,y)=0\} = \langle x \rangle^{\perp}$ is a hyperplane in E. Conversely, if a hyperplane $F \subset E$ is given, then there exists a vector $x \in E$, $x \neq 0$ such that $F = \langle x \rangle^{\perp}$.

Proof.

If $x \in E$, $x \neq 0$, we we take $\alpha(x) \in L(E; \mathbb{R})$ such that for every $y \in E$, $\alpha_X(y) = g(x, y)$. Then for every

 $y \in \langle x \rangle^{\perp}$, $\alpha_{x}(y) = 0$. i.e. $\langle x \rangle^{\perp} = \alpha^{-1}(0)$, therefore from lemma 1 we have $\langle x \rangle^{\perp}$ is a hyperplane in E.

Now, if F is a hyperplane in E then by lemma 2 there exists a linear form $\alpha \in L(E; \mathbb{R})$ such that $F = \alpha^{-1}(0)$. But since g is a strongly non-singular, then there exists $x \in E$ such that for every $y \in E$, $\alpha_X(y) = g(x, y)$. Hence $F = \alpha_x^{-1}(0) = \{y \in E : \alpha_x(y) = g(x, y) = 0\} = \langle x \rangle^{\perp}$.

Now we are ready to prove the considered theorem. Suppose E is a Banach space and F c E is a closed subspace of E with codim F = k < ∞ . Then by lemmas 1, 2 and 3, F can be represented in the form

 $F = \bigcap_{i=1}^{k} \langle x_i \rangle^{\perp}$ such that for every $i = 1, ..., k, \langle x_i \rangle^{\perp}$ is a

hyperplane in E. we define a set G where dim G = k < ∞ , G = $\langle x_1, \ldots, x_k \rangle$. Now we have to show that E = G \oplus F

Suppose that $z_0 \in G \cap F$, then $z_0 \in G$ and $z_0 \in F$. But from the definition of G. $z_0 \in F^{\perp}$, then $z_0 = 0$. therefore

El. R. Lashin

$$G \cap F = \{0\}$$
.

For non-singularity of $g|_G$, suppose that $z \in G$ such that g(z,x) = 0 for every $x \in G$. This implies that $z \perp G$ and $z \in F$.

Consequently $z \in G \cap F = \{0\}$, i.e. z = 0 and this shows the non-singularity of $g|_G$. By construction of a base in G it is easy to prove that $g(e_i, e_j) = \delta_{ij}$ for every $i, j = 1, \dots, k.([2])$.

Finally, it remains to prove that for every $z \in E$, z = x + y where $x = \lambda^{i} e_{i} \in G$, i = 1, ..., k, $y \in F$. This means that we must determine $\lambda^{1}, ..., \lambda^{k} \in \mathbb{R}$ such that $y = z - \lambda^{i} e_{i} \in F$ which is equivalent to $(z - \lambda^{i} e_{i}) \perp e_{j}$, j = 1, ..., k. Consequently $g(z - \lambda^{i} e_{i}, e_{j}) = 0$ and $g(z, e_{j}) = \lambda^{j}$. Therefore, for every $z \in E$, $z = \sum_{i=1}^{k} g(z, e_{j}) \cdot e_{j} + y$ such

that $\sum_{j=1}^{\infty} g(z, e_j) \cdot e_j \in G$, $y \in F$ which means that $E \subset G \oplus F$

and this completes the proof of the theorem.

REFERENCES

1- Fomin, V. E., Differential Geometry of Banach Manifolds, Kazan U. S. S. R., 1983.

2- Taylor, A. E., and Lay D. C., Introduction To Functional Analysis, John Wilely & Sons, Inc 1980.

المحند الأول :" بحث ونفرد"

ingelland

On Hyperplanes in Banach Spaces

عن المستوبات الزائدية في فراغات بناخ

: ilooll

مجلة كلية العلوم جامعة المنوفية – مصر

Sci. J. Fac. Sci. , Menoufia University, Shebin El-Koom, EGYPT, VOL. VIII, No. 58, 1994

نبذة عن البدك: -

يتناول البحث بالدراسة الفراغ الجزئى F من فراغ (بناخ) E لاتهاتى البعد ولقد تم فى هذا البحث التوصل إلى نتيجة مضمونيها أنه إذا وجدت صيغة (Form) g معرفة على E ولها خاصية قوة عدم الإنفراد (Strongly non - Singular) بحيث كانت الصيغة g المقيدة على الفراغ الجزئى F ضميفة عدم الإنفراد (Weakly non- Singular) فإنه يوجد فراغ جزئى G عمودى على F بحيث تكون الصيغة g المقيدة على هذا الفراغ الجزئى G ضعيفة عدم الإنفراد . و لقد إستخدمت هذة النتيجة فى تعميم التديد من الخواص الهندسية للفراغات متعددة الطيات الجزئية لامهاتية البعد F والتى لها الخاصية (Codim F= k)