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Abstract

A survey of the principal schemas in the literarure suggested that a new way of addressing the problem
ol signalure recognilion be formulated in order o find a satisfactory solution for eliminaring randem
forgeries. A fundamental problem in the lield of off-line signature recognilion is the fack of a pertinent
shape representation or shape factor. This paper inroduces a novel idea for a dynamic signamre recognition
syslem. An inital atremprt is presented lo demonstrate the dala glove as an cffective high-bandwidth data
eneey device for signature recognition. GloveSignature is a virteal reality based environment to support the
signing process. The proposed approach rerains the power to discriminate against forgeries. This paper
exiends the use of instrumented daia gloves - gloves equipped with sensors for detecting finger bend, hand
positton and orientation for recognizing hand signatures. Several researchers have already explored the use
of gloves in olher application areas bur using the gloves for the recognition of hand signatures is never
reported. An attempl is made in this research o explore the feasibility of using the 5 Glove in on-line
signature recognition. Two hundred signatures were collected from twenty subjects, and fearures were
extracted. We demonstrate the effectiveness of a hvbrd technique which is based on both the most
discriminating eigenfearures and self-organizing maps (SOFMs) for signature recognition.

Index Terms — Virual reality, on-line signature recognition, principal component analysis, eigen
signatures, feature selecrion, self-organizing maps, signature recognition, data gloves.

1, Introduction

Having a reliable method to prevemt unauthorized transaction or disclosure is essential in the use of
computers for business transactions or for access ot proprietary data. The problems wilh current systems
such as keyboards or special mput terminals such as remembering the various passwards, or Personal
Identificarion Numbers (PINs), keeping them secret and keying them inaccurately render them unreliable.
On-line signarure verificarion with data gloves snlves mnst of these problems and makes the forging
impossible.

In this paper, we oulline 4 new approach for signature recognition that 1s secure o skilled forgery (sce
section 4).  Hand gloves provide data on both the dynamics ol the pen motion during the signature and the
individual’s hand shape. Signaiure verificalion using the dynamic signature dara results in much simpler
and [aster approach than the most widely used image anatysis approaches. Significant in this regard is that
skilled forgers cannol reproduce 1he inovement dynamics that occur with an authentic signamre. Anolher
paine is that hand size is considered while using the dam glove.
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Stanc hand posture recognition is currently the mast common and widely used method for interacrion using
zlove input devices. In ihis paper we explore the use of dama zloves in the field of hand signare
recognilion.

Dynamic Signarure Recognition (DSR) is difficult for various reasons. The large variations in the speed
aof execntion of various pheses of a signamre is one such reason. Another reason is the quality and positions
of the physical properties describing the signature themselves. These problems are then exaggeraled by the
differences which arise when the same person attempls repeated executions of the same signature. Other
factors effecting the difficulty of DSR are the cinotional stare ofthe signing person and the aceuracy of the
input device used. And finally, a large amouut of data has 1o be processed in real ume because of large
variances in the length of time to execute a signarure. [n this paper we describe our approach to overcommg
the difficulties ol DSR using neural networks, Self-organizing maps have already proven themselves to be
appropriate and efficient [or signarure recognition []]. However. the extensive amount of dara involved in
DSR requires a different approach. Because of feamres such as topology preservanon and autumatic
learning, Kohonen's Self-Organizing Feare Maps (SOFM) are particularly suitable for the reducrtion of
the high dimensional data space which is the resull of a dvnamic signature, and are 1hus implemented for
this task, :

Vitual hand signatures are on-line recordings of hand movements that are used to verify the identity of
a person in banks. We are developing a computerized signalure recognition system for both the normal and
the blind. The system will provide a new tool for signature verification. Figure | shows the components of
the proposed system: data acquisition, data reduction using SOFM or principal components analysis (PCAJ
and collective classification. Virtual hand-signatures are acquired during the period of sigming on a paper
using the ™ Glove. The acquired signature is processed for dam reduction and ihen classified in the
recognition stage.

>

]
Data Reduction
Data Clave p SthGlove Serial Signature o Using PCA or
[ntertace Acguisinon SOFMs

Identity | Collective SOFM ‘ i

Figure 1: Virtual-Signature Recognition System

In sectuon 2 we prescna a delailed review of the prévious work wn the field of swnature verification. n
section 3, we describe the dvnaimic signaturc-dita acquisiion process and zoine i5sues related to he nature
of the acquired data. The syswin architeciure 1 desenibed  mosection 4. Feawre extracoion and
dimensionality reduction using both the self~orsanizing feature maps and the principal componenl analysis
#re discussed ihosection 3, In seclion 6, the neural network clissifier is desenbed. In secuon 7, experimental
restlty and discussicn are provided. Seclion 8 coneludes the paper
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2( Qvereiew of Previous Work in Signature Verification

in this section, we will discuss some of (he more prominent research eftors a < 1 the arsa of
signarure recognition. Delailed surveys can be found in [2-4]. Within the lsst e vanery of
l'eau;l_gilex:rnction and classification methods have been appiied (o the signatur: te Syniive . Wille much
progress has been made 1oward signature verification, reliable lechniques for signamre variiication in the
case of skilled forgeries have proven elusive. Signature verification approache 4r: cvewey ed into three
major categories. the image-based (static/off-line) approaches, the devis.-su.ed ¢ -umivfon-line)
approaches and the hybrid approaches. We will consider the three approaches se- rateiv,

4

1.1 Image-based (oiT-line) Approaches to Signature Recognition

Off-line signature recognition is still an open problem. Several approaches ia s2 been proposed in the
contexl of orff-line signarure verification, like two-dimensional transforms, %.oh:urang of Jirectionan data,
horizoneal and verucal projections of the wriling trace of the signature, ~~uemral aoproaches, loval
measurements inade on the trace of the signalure and (he position of feature prinrs located on the skeieron.

In {1], 2 new approach is described for checking the consistency of biomneiric daabases, und 2 special
application on signarure recognition is given. A neural network based cons stencv measure . proposed to
quawtify the intra-variability of the individual’s signatures. A vanance based -pecs e {5 comnuted from the
output of a trained 2D-self organizing map to check the consislency of the 1 atires « {3 same writer,
This measure has two purposes: the user can be asked to sign again il the toeasstency degree (s higher
than a pre selected threshold level, and the avoidance of humau error when building a training set by
detecting outliers. Having achieved both goals. signature recognition proced.ares can be implemented.

A democralic neurai nerwork archirecture is presented for minimizatiou of the reject error rale and
maximization of the correct classification based on well-known fearure sets and a new feature set, The
used signature darabase consisted of a training set inciuding 100 signarures acquired from 10 subjects and a
test set including 60 other signamires acquired from & randomly seleciad subjects from the ten signers,
Signarures were recorded over multiple sessions to intentionally encompass the intra-persoral vanations
The signatures are first thresholded. The minimum bounding rectangie of each signarre is \hen specified.
The [ollowing four different feature groups are exlracted:
|- The first seven moment invariants of the whole sighature,

2- A sel of association fearures including the entropy of Lhe signature when considered .. 2 contingency
table, and ihe linear correlation ¢oefficient berween the vertical and horizontal prajections

3- Statistical fealures such as the skewness, the kurtosis, and the coefficient of varaticn o xtracred from
the concatenaled horizoneal and vertical projections.

The False Rejection Rate (FRR) of the individual featnre sets whon usen vch s ove Jimensional Self-

Organizing mup classifier is shown in Tabie |.

Table |. The False Rejection Rates for Individual Feature Seis o' mae Dl © vt sl wtlers

Feature St

Moment [nvanants L
Concatenated Horigontal and Vertical Proseci s~ ™
Association Features . I
Statistical Features of Projections t

The implementation of a democratic neural nerwark archecture whizh votes Motureen the ourputs of the
four seif-organizing maps resulted in 2 0.0% FAR with 2% rfe-tiom,

In {5}, a inethod for off-line signawure veriiiieon b W zewn ne ! gore oxraction and newral
network classificalion 15 described. A toml of 3878 & oture irvages B o lected to torm the signature
dmabase,  Signarures ave acquired using a scanuer ot peenat e STI00 I Yo arv-seale, Medlan and
average {iltering techniques are used for standard no®s 1 redccien Bhvanzatu of signatures is folloved by
worphological operations (o fill small holez cnd g rer -~ db e ool s e soRets mostly gemeraied
by noisy hackgronnd., Geomelnical foatures we giriem=om. 2t o omopnd anlor several sealey by oneoral

network classifier  The following fenmies cre ogstes dey 20 Aol oo ccehing ik
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area distribution, and signature frontiers. A set of directional features is used 1o segment the signature into
constituent parls.  Signature shape is learned by neural nerworks at mulliple resalutions. Local shape
features are extracted by using a set of multiple resolution grids with fuzzified borders averlaid on top af
sighature shape representation. A Multi-layer perceptron is selected for signature classificalion. An
ndividual signal verifier is constructed for each enrolled signature class. Each verifier consists of several
simple three-layer perceptrons, one network per feamre resolution plus a decision network whose function
is 1o combine the response from the fearure networks and produce a fial confidence rating, All genuine
signatures and all forgery signatures are used as testing dara, The average false acceplance rate for sach
s'gnature class is just below 0.05 for a test set of 3360 samples. Under targeted forgery test, the test size is
24 genuine samples and 144 [orgeries, the average correct classification rate is abour 90% al no rejection.
An overall match rating is generated by combinmg the outpurs at each scale. Experiments on 3000
signarures show 90% correct ¢lassification.

In [6], an off-line system that is based on both global features and backpropagation newral networks is
described. Three typey of features have been used:

- Horizomal and vertical projection moments which provide a stetistical measure of the disoriburion of
the signanure pixels, and is relatively insensitive to distortions and style vaniation,

- upper envelope of the signature compenent, and

- lower envelope of the signature component.

Signamures are binary acquired with a hand held scanner at a resolution of 200 dpi. A modified median
filter is used for noise elimination. A filter mnsk of size 7x7 pixels is used. A normalized represantation of
the signarure image is obtained using the eigenvecrors and eigenvalues of the signature distriburion. The
projection based feature set can only be effective if the signature is properly aligned. This issue is not
considered in their paper. Aligning the signarure can be achieved by rorarion the signature around its major
axis beforz extracting the fearures. But the most imporiant characteristic of projection moments is their
relarive nsensitivity lo distortions due to noise and/or minor style vartations. Recognition decisions are
made on the basis of each feature vector using three different classitiers. Weights assigned to the outpur of
each classifier are determired by the accuracy and reliability of the classifier.

The used signeture database comprised fifteen samples of genuine signatures collecied from each of ten
individuals. 1n additton, 100 random forgeries are used for evaluating the system. Classification networks
were trained with five randomiy selected samples of genuine signarures of each person. The outpur layer of
the neural net includes a number of neurons equal to the number of persons involved in 1he experiment,
The activation values of the correct outpul neuron is used as a threshold to implemeni a reject option for the
combining net. Table 2 presents the overall experimental results in terms of false acceprance (type If} or
misclassification and (alse rejection {type I) error rates for the complete sample set. A combined classifler
resulted in & subsiantial reduction of error rate. Weighted individual classifier outputs resuited in a reduced
error rate of aboul 3%.

Table 2 Percentage of errors [6]

[Errortype | Moment | Upper envelope | Lower envelope ¢ Classifier Combination ]
Equal weight With leaming |

Type 11 10.73 7.85 12.34 6.5 3.0 |
Type | - L - -- L 3.33 1.0 ]

In [7], 2 new formnalism for signaturc representation based on wisual perceprtion is proposed.
Granulometric size distriburions of the signatre image have been used for the definition of local shape
descripots W attempl o characlerize the amount of signal activity - front ol the retina locared on the {ocus
of anention grid. An internal morphological shape descripror cailed Lhe pecstirum is computed by measuring
the resulis of successive morphological openings of the object by a structuring elemenc that increases in
size. A dalabase of 800 genuine sipramres acquired from 20 individuals is used for (esting the systein.
Both threshold aud nearest neighbor classifiers are used. The nearcst neighbor classifier showed a roial
crror rate of 0.02% and 1he thresiiold classifier resulted in a 1.9% error rate in the context of raudom
forgeries.

In {8), aneural network approach is proposed for uff-line signature venficition based on the direclional
probability density function (PDF). The PDF is used as a global shape factor. A standard signature dalabasc
of 10 signatures written by 20 individuals, (800) inages are used in this siudy. The training ser includes the
first 20 siguamures of each writer, wiile the (est set includes the last 20 signawres. The hesl back-
propagation network classifier archilecture resulted in an error rate of 1.24% and rejection rate ol 1.506%.
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In {9], a wavelet transform based technique is applied for optimal segmentarion of handwritten Chinese
signatures. An input signarure curve is segmented at the inflection points which are located by datecting
the zero-crossing points of the wavelet transform of the input signature. Signatures are acquired using a
digitizer and are reconstructed by linear interpolation to include the information about the wriring velocity
of Lhe signature. A database containing 220 genuine signatures of 20 stable signers is constructed. Each
signer writes 1| signarures. Strokes are segmented at its points of inflection to rewin the comers of a
signature. Experimental results for segmentation of only six signers are presented.

In [10], an off-line human signature verification system is presented in which the slant directions of the
signature strokes and those of Lhe envelopes dilated signature image are extracted. A Multi-Layer
Percepiron (MLP) is used as a classifier. Preprocessing is done before feature extraction. [t eliminates
stylistic fearures and performs size normalization. For signature classification, three rypes of classifiers are
ested (Euclidean distance, Minimum misclassification linear classifier and MLP ). The best system
performance was given by the MLP classifier achieving an equal error rate of 4.7% (95.3% correct) for
skilled forgeries on the average.

In [11], a comparative study is presented for a large number of features (210} previously sdied in the
literature and a set of |2 significant features is selected for recognition of Arabic handwritten signamures.
Smtistical measures such as the mean, standard deviation and the spread percentage are used for feature
sefection. Those features that have spread less than 25% for all persons are selecied. Experiments were
performed on a database including 144 genuine signatures acquired from 9 subjects. Signatures were
scanned at different times. The lest set consisted of 72 signatures { 9 subjects, 3 samples each) and the
waining sel consisted of the remaining 72 samples. The 1est results yielded 98.6% recognifion rate using a
fast backpropagarion neura network classifier.

in [12], a system that is based on a neural network approach for off-line signature verification is
described. The following geomerrical [eatures are used lo exiract 41 metric, slatistical, and morphologtcal
fearures:

1- Height/'width ratio,

3- Principal axis orienration,

3- Elongation,

4- Slope,

5- Amount of connected components,

6- Hole and cavity attribules,

7- Point densities on difTerent areas.

The 41 paramerers are used as an input vector to a two layer perceptron for ali signers. An improved back
propagation algorithm is used for training the neural network. A dalabase comprising 912 signatures
captured from 48 signers is divided into a training set including 480 signatures and a lest set ingluding 432
signaures.  The input vecior to the classifier is first preprocessed using normalization (in mean and
variance) and PCA. Preprocessing improves the system performance fram 97.2% 1o 98.1%. Different
classifiers are used in testing the system. The two layer percepuron applied to PCA resluted in the best
performance of 98.1% correct classification. The idenlification error rate is 2.8% when there is no
rejection, and is 0.2% when 10% of the signatures are rejected. A good [eature of the used neural network
is that it is robust against segmentation errors (missing segments} as a result of its generalization capability.
Yerificalion experiments used a two layer perceplron for each signer. For lentning the network, i0
examples of genuine signawres and 45 forgeries were used. The outpul of 1he verificmion nerwork is yes
or no. The experimenis resuited in an error rate of 1% when there is no rejection and an error rate of 0.1%
when | 7% of the signalures are rejected.

In [13], algorithms were devetoped for extractiug global geometrical and local grid features which are
combined to build a multi-scale verification function. Signatures were scanned using a 8-bit, 300 dpi
resolution. Binary thresholded images are then liuearly uormalized alter size normalization. The following
global geomelrical [eatures were extracted from signature images:

i- Effeclive horizontal width of signature imagc

- Slant,

- Yerical center-of-gravity,

4- Maximum horizontal projection,

5- Area,

6- Nuwnber of signature pixels within each grid cell,
7- Daseline shifl of the signanire image.

Laa 1t
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2 ‘ollowing local features were used:

Angie of comner,

Curvature of an are, and
- Inrersection between line strokes

Results  indicated a lower verification error rate and higher rehabulity than either of single scale
fuactions {geomerric and grid). A database consisuny 450 signatures is acquired rom 25 subjects was used
for evaluating the system performance using statistical procedures. Fifteen subjects were selected randomly
o provide 20 genuine siguatures over a course of ane month. Five subjects were selected randomly
provide one simple forgery for each of the 15 subjects given cnly the printed name of the person. and other
five subjects provided skilled forgeries given sample of genuine signatures and aliowed to praclice, one for
vach of the 15 subjects. The FRR for the case of skilled lorgeries is 1.0% and the FAR is §%. For the case

Isimpie forgeries, Soth the FRR and FAR rates are 0.0%.

In [14], a hybrid technique integrated both geomerricai features with Mulli Resolution Analysis (MRA)
.ased features. A vector quantizarion classifier and a neural network classifier were used to classifv the
~wlti-resolution features. Features extracted at different scaies proved more effective in image analysis.
“ecguse signarures of the same person are likely to differ on oue, bug not on severni scales. A dalabase

omprised 450 signatures that were collected from 25 people. An authentic signature database was bniit
from |3 people. Five were asked 1o write a set of free-handed forgeries, and the other five were usked to
produce a set of simulated forgeries of the 15 subjects. A toai of 20 signatures were coilecied ffom each
person. The tramning set includes 15 of the signarures and the remaining five are used for restiug the sysiem.
The multi-resolution analysis used a cubic spline for the wavelet iransformation and is performed on both
the horizonial and verncal projeciions of the signamres until the length of the harizoniai projection was 2
and the length of vertical projection was 4. The same MRA was perforined on the signamure image itseif
For signarure classification, ™o classifiers were used: VQ classifier and a three-iaver feed forward neural
classifier. A neural network was built for each scale of the mulli-resolution representanon, The outputs of
the elementary networks are grouped to form the outpur for an individual. The verification error rale of the
V() clasgifier scheme was 6.7% while that for the muiu-resolution analysis was 4.9%.

In {L5], the design and implementation of 1 signawre processing syswm is reporied. The signalure
verifier is based on 2 back propagation neural nerwork apprnach. The system achieves a performance ol up
1> %0%. The input to the neural network for verification consists of all the pixels thar made up the sighamre
image. The image s acquired by optical means and reduced (0 2 stangard size.

In [16], neural networks are used for signamre venfication to detect casual forgenes. Genuine stgnatures
and forgeries were used (or waining neural networks. A database including 380 genuuie signatures (s
coilected over two years from five individuals. The same five individuals signed 2635 forgertes in which the
idividuals knew the name ofthe person whose signature was being forged but had not viewed a genuine
signature. Signatures were nofmalized o a size of 123 X 84 size. A FRR of 3% and FAR ol zero-effon
Facgeries ol 3% has been reported.

in f17]. a statistical model 15 nsed for signatnre recogmition and verification. The model invelves an
averigs Signature (intrinsic shape function) which is independent ot speed, location, scale und ortentation
The used signature base 1s constructed from 10 signawres from cach writer. Resulits are not reported.

In 1§}, a comparutive study s conducted for evaluauny the performance of parametric and reference
parters Dased [leaures in static signaiure verificalion. Reference patiem based learures are extracted froin
kst the worizontal and verntical prorections Similar lewtures are extracted from the unknown patiern.
Czher featires such as clang, high density factor, and  the normalized global base line are cxtracted. A
sianature database includine 200 gerwne is obtned Foam *) wibjects and 200 forgeries are skilifully
<ymulated by 0 forgers Experimental {nveshaals s -Fuwsd Ui the reference partemn haved [eatures
soamficantly itnproved the verification sysierm - the- rasult of being ndependent of 1he signatare
prgtion r e documeni,
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{4) Local fearures such as:

- slant as measured on the element

- the high density factor

- the comparison relation between the length of each element and its precedent, starting from lett 1o
right.

- The position relation between the element baseline and the giobal baseline.

Signagures are processed (or removal of noise by performing the vertical projection of the signature

exmacied from background, finding the largest component in this projection aud then eliminating all pans

which does noi belong to the largest component. The authors expect their approach (o be effective in

signature verificarion,

2.2 Device-based On-Line Approaches to Signature Recognilion

Inpul devices in Lhis category are either digilizing lables, or smart pens and hand gloves for the first time in
this paper.

2.2.1 Digitizing Table - Based Systems

In [20], both global and local [earures thar summarize aspecls of signature shape and dynamics of
signature production are used for signarure verification with 3% equal error rate. Signamres are normalized
for position, size, and orientation using the Founer transform. The performance of the sysiem i3 evaluated
bused on a test database comsisting of 342 genuine signatures and 325 forgenes. Each reference set
consisted of the firse & signawures ot everv one of the 39 writers. A simple Euclidean disiance classifier
was trajned on the first 6 signatures of the 39 writers and tested on 542 genuine signatures and 32
forgeries. The best lalse acceplance rale achieved is 7.5%.

ln [21], the design of a FIR filter (or on-line signature verification is discussed. The FIR is determined
usine the autc—<orrelation functions of both the horizontal and vertical velocities regarded as the input and
output sequences of the flter. The horizontal and ventical velocilies are calculated analytically by
differentiating the normalized honzontal and verticnl directions of the handwriting on a stroke of signature.
The time duranon of the signing is normalized to one. Experiments are performed on a database oi one
hundred Kanji signatures from six subjects. Type [ error rates are found to be 2-12% while Type Il error
rates are found to be 0-2%.

[n {22], an Autoregressive (AR} mode! is used it combination with a Hidden Markov Model (HMM) for
wriler identification. The signature, represented by a1 one dimensional spatial stochasuc sequence, is
decomposed into pseudo-stalionary segments. Velocity, acceleralion, and pressure profiles are not
considered in this studv. The evolution of abrupt and gradual changes in the contours is described by the
AR-HMM. An AR-HMM is used to model each writer, (he resulting mode! 1s 2 set of probabilities whicl
can be used to calculate the overal] probability of a panticular observation sequence. A test signarure is
sesmented, AR parameters are extracted for each segment, and these are quantized and assigned VQ code
hook wvalues A test wriler sighature is identtlied by comparing it to each ol the writer models in the known
writer population. The used training set includes 80 signatures from each ol 16 wniters, while the test set
includes 20 siguatures. Another rest set includes 70 signatures per writer. The classification results for 20
st siguatures are 97.5 % and 94.53% for the second ser {70 signawres) with 95.1-98.7% confidence
interval. The average FAR for the case ol a single threshold in the first experiment is 4,375 and the
average FRR is 4.575%.

In {23], a technique based on Bayesian Neurai Network is presented tor dynamic signawre verificatioo
of Chinese signatures. A set of 16 feawres 15 used:  1o1al lime, average velocily, uumber of segments,
average length in the eight directions of the signature, widdyheight ratio,  Teft-partright-par densicy
ratio, and upper-part/lower-part density ratio - Experiments were performed on a darabase ceosisting of 300
genuing signatures from 30 subjects and 200 simple and 200 skilled forgeries by 10 forgers. The FRR {or
the case of skilled Forgers is abnu 2% FRR, and the FAR is 0.1% zero-e(Tort.

In [24], a model in which a test siguature is assumed 1o consist of a reference signature which s
transformed from occasion to occasiou is described. Five steps are used for signature verification. Signature
data are recorded from a praphics rablet which recorded the (x,¥) coordinates as well as (the downward
pressure on the pen. A cuhic spline approximatiou is used to average vut the measurement 2irors. Speed is
computed from the smoothed simnarore, A time warp function is computed so that corespondence berween
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the reference signalure and lhe signamre being veritic. . . s.anw. ™2 iignaiiiy - segmenled using low
speeds regions (low speed is 15% of mean speed) inro . ceyuene- W seigment- caucd letlers. Finally, the
reference signarure is estimared by avernging, A distance rwease 15 sed for de it making,

2.2.2 Pen-based Systems -

In [25], a svstem for on-ling signature verificauon using LIC Cepsirum ano Multi Laver Perceptron
neura) Networks is described. Cepsiral linear predicrion woeinic,:nis are exacted wom the rajectories of
signatures. A number of individual MLP networks reveves i cepsiral coetlicients for maining. The
outpuis of all nenral nerworks is used for signature vesudcauot. A test dambase includes 321 genuine
signatures from 27 subjects and 321 forgeries from two umilators is used for training the single output
MLP's. The remzining 489 genuine signatures ana 31 3 -uer-ex from urother two imicalors are nsed for
obtainmg the error rates, The genuineness of the inpuc ssguacres rom e lest dambase is determuned with
an ermor rate of 4%.

In [26}, an on-line signature verificalion system busua uil GyMamug Linte-wrappmg \ DWT) is described.
The SmarPen is used 1o collect data such as pei-u) pusaivns, .pecus, accelerations or torces while a
person is signing. Five pen signals are low-pass Diliciwu win cu-olT trequency 40 Hz . The resulting
signals are sampled a1 100 Hz. Dynamic tme wrappinyg & wagu 10 ueui with the presence of non-linear tme
differences berween the test and reference signatre. 1una and nouon paramerers are extracied as
fearures. Signawre classification i3 based on MallawRobl. wecISioN Muaking, EXperiments are pertormed
using 360 genuine signniures fom 18 individuals, cotle. wu over 4 period of ) inanths. For each writer 15
signatures are used as reference and the remaining . »igDalures are osed for estng. As forgeries for a
certain person, the original signalares produced by the xne: - gness are used. Tite optimal classitication i3
achigved by asing the Gabor mansform-coefficienia 1erci-bing the »ignal contenc 1 the fTequency range
fom 0 Hz to ~/- 30 Hz. The Equal Error Rate (EER; 15 1.~ /v. Anviner experiment 1s performed using the
kemel approach for classification of form and motion leau.ee anu acueved an EER of 0.3%, The authors
nole that the major drawback of their appronch 15 that they use cacn of the 5 signais avaliabie individualfly,
which neglects the link berween signals.

In [27], a genelic algorithm based system is proposcd e v g wignature venfication. The invisible en-
up parts of the signature are used to CORSITUCL & s1gna.wis 2cuv waion system. Trajectories iefl in pen-up
siwuanon  which are called “virral swokes” are LSew i0 ¢ v (NG oplimat iatures which represent the
personal characteristics of the authentic signarure and avueus we. GiTOr rate greatry, Virtual strokes are used
to exract 6 kinds of fearures ro form the following cany, .0 icoivre set:

l- length,

2. slope,

3~ the biggest angle, it s the mosc acute angle in Lthe pan1. Lur- e

4- local curvature, and

- the relative locations of the virtwal strokes dis_x, wer .
The Genetic Algonthm (GA) is used to select @i wos <table ieawures from dw candidate feature sel
Signamre verification is performed by applying o ludy covork o ine Lromosomies in order to absorb the
inapersonal variaoility. Shupes of the fuzzy memut.ovp functions we deiemuned using 3 randomly
chosen signature from the signature Jatabase. Expe. nedls dle periormed on 250 signatures ¢ 120 genume
signatures and 130 forgenes) acguired [froin 26 suby s, Vi clie of 1pe [ e, vs 6% and ¢hac of type 1
error s 0.3%.

In [25], a 4 faver back propagation neu... networ< ciassilicr 18 wpphicy on pen pressure and speed of
writing featuwres  vhich are exiracted on-line o TH plsons g uwies. | ne suck-propagation network
nag an inpur layer ol 768 nevrons © whicld -ie pen ploosure and “ne propirocessed speed are input. The
outpur layer consists of rneg neuron and gives o dugrie U el 0 A Brew acegton rate of 7.97% and
.. error rativ (False acceptunce) of 0.61 % are reporteu The svsill 15 Consirucied on a ngure-compuler,

[n [2%], & comparauve siudy is performed w1 s Ladure venerion Lo position, velociy, and

[

scceleraton siguils,  Threo *vpes o signal compars a1 aoemins ore - o dviemse tme wrpmng,
e jomal corrediion . sl v it ol @ oseecd Je Lo T @owason shows  tha the mest
.o orinunGnt sighals dre sigmws whicn rellect vers, woar ol sty process and thuit the tes

- resentacion space ior AL sigramure venficanos e veloe.gy cotean Eognatures were digitized wah o
Sl bwedtd o Lo Gy ol o Hzoatd aresohvasn d R acemel 4 dataoise of VS0 signatures 12
o Clegled from JvovoieRiEes Db wers seguires ur 3 sesnn vie per sy, No skilled forgerne
AP < VDN B TER S ore, ol dalabage © oo Pl s e pintip  seition, the o
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tip velocity and the acceleration signals were compuled from the position signals in two directions.

In [30], an automatic signature verification system that is based on dara analysis and clestering methods
is described. This approach uses geometric features such as number of connected components, number of
loops, quantified cumuiated phase for signatures on (heir whoie, and initial direcrion of track pen coded in
four quadranis logeiher with dynamic features such as total duration, duration of connecled components
and mean and maximum velocities in connected components. Two experiments were performed . First, a
new linear stepwise discriminant classifier (14 classes } was applied w the reference set The classifier
maximizes the ratio of between-class scatter o within-class scatter. A partition by hyper planes permirted
99.7% of valid classificarion on test-set elements then an iterative process for dynamic clustering was used.

2.2.3 Hybrid Appraches to Signsture Recognition

In [31}, “Counter-match’, Dynamic Signatre Verification (DSV) using neursl computing methods,
offers a reliable wneans of confirming a person’s identity without resorting to addirional biometrics such as
fingeprints or hand-prints. Counter-match is a DSV package which works with electronically captured
signatures. The system compares both the shape of a signature and the speed of wriling the signature. The
neural network is embedded within an "elastic' partern marching code, Elasric partern matching allows rwo
shnpes 1o be mariched even though there are small differences between the sbapes. The code is designed to
be tolerant of natural variations in signatures - but critical of forgeries leading to a very robust verificaliun
sysiem.

In [32], a signawre base consisting of & consecuiive lodgings was used as a reference ser. A set of
differeni featres like frequency based fearures (Fourier spectrum) , geometrical features (lengih of
signature) , and dynaniic features (lime, speed, pressure and acceleration) is used lor signature verification.
The reporied recognition accuracy is abuut 95% and the error rate is 1/10,000. Optimization of a
Jescripuive fealure vector for each individual signer resulls in a system which adapts its behavior to the
individual signature characteristics.

In [33], atransputer based system is implemented for signature verification. Experiments are performed
on adauhase of 40 sample signatvi2s from 24 subjects. The samples were divided 10 provide independen
traiming and test sets. The system was able to perform correct verification wilh zero error, The used fearure
sel is noi reporied.

2.2.4 Glove-based appreaches to Signature Recognition

The Glove represenls an easy to use device lhal can reflect the idenlity of a person and renders he
forging process nearly impossible. The dynamic features of hand glove provide information on:

1- pamems distinclive to an individuals signature and hand size

2- time ¢lapsed during the signing process

3- hand trajectory dependent rolling

To the authors best knowledge, hand gloves have never been used in the field of signature recognition.
Gloves are used now for the first time in a signature recognition system. Wide application in banks and
internet based applications could be enhanced by manufacturing light and wiceless hnnd glove.

While most input devices otTer ome, rwo, or three degrees of freedom, the data glove is unigue in tha it
offers mulliple degrees of freedom for each finger and for the hand as wetl. This permits a user o
comnmunicate o the compurer a far richer picture of his or her intentions than most other input devices, As
digital information grows in quantity and importance in the workplace. wnore elficient means of
manipularing it will increase in importance. However, this rich expressive powcer also brings added
comptexity to the input processing side of the sysiem.

This research is an inifial aternpr to dewnonstrate the daia glove as an efTective high-bandwidth dala
entry device for signature recognition. We believe thal the glove will be the most effeclive and secure
device for developing a signalure recognition sysiem. We now look al the daia glove and its signalure
recognilion using the following preceprs:

1. Toimprove syslem security

2. The signarure recognition algorithit must assume 2 low performance/low cost glove. The average
consumer will not spend  exorbitant ameunts of money on an input device, and the easiest way 1o cut
the cost of today's data glove is to reduce ils resolution. An cxample of such a glove is SDT's data
glove, which provides mid-range perforinance but whose cost is 3500 (1997).

3. The signature recognition algerthim shouid nol locus exclusively on the static position of the hand at
any time, but also on the use of rate-of-change information.
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Glove as a tool for signarure recognition allows authentcation of people not only through the biometric
characteristics of their signature bur alse through the size of their hand. The virual signature acquured by
the glove can be used to meke Intemmet transactions or bank rransfers secure. because it unequivocally
authenticates a person. [n order to increase its user friendliness, gloves for this purpose must be wirgless.
The author believes thar the Yirmal Signarure is the most reliable wny for signature authentication speciaily
when the signing process takes place un a digitizing table as well. This combination results in all possible
usefu) features iike finger and hand dynamics, speed, time, acceleration and the effecr of hand size,
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Figure 2 {a} A typical signature on paper dand the correspondioy seven glove signals
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The reliability of algorithms was tested with reeords trom the standard AHA
database, 1t has been found that the algorithm based on neural wavelel network ean
detect all the beats by learning under any eondition without false positives, lime advance
or ume delay, and i js faster than the neural network algorithms due 1o the use of the
wavelet function.

Therefore, it can be concluded that the algorithm developed by Dickhaus H.,
Heinnich H {1996) and based on neu. al-wavelet-network is able to detect all
beats regardless of its shapc and 1t is the mos. insensitive algorithm 10 the different
types of noise.

REFERENCES

1- Abou-chadi. F.EZ. and sajeh. MM.. "An Adaplive QRS Dclection Algorithm With Variable
Threshold,” Mansoura Eng. Journal. vol . 17, No .2, pp. E)-E12, Dcc (1992 )

Z- Afonse VX, Tomplins WJ, Ngugen TQ, Trawmanns. and Luo 5., “Filier bank-based processmg of
the stress,” ECG. Proc. Annu. Int Conf. IEEE Eng. Med. Biol Soc.. Sep (1995).

3- Afonso, V. X., Tompkius, W. J., Nguyen, T.Q., Trautmann, S_, and Lug, 8., “Companng Stress ECG
Enhancement Algorithms,” IEEE Engineering in Medicme and Biology Magazine, May/lune (1996).

4- Ahdqrom, M.L, and Tompkins, W.I., “Digital Filters For Real-Time ECG Signals Processing Using
Microprocessors,” TEEE Trans. Biomed. Eng., vol. BME-32, pp. T0%-713. Sep. (1985)

5- Beal, R and Jackson.,, T. Neural Computing, (1990).

6- Balda R. A e al The HP ECG Amalvsis Program Trends in compulcr-processed
Elecurocardiograms, 1 H. Van Bemnel and J. L. Willems, Eds. North Holland. pp. 197-205, {1977).

7~ Daubechies. Orthonormal bases of compactly supponed wavelets. Pure Appl, Math.. vol. 41, {1988).
8~ Dickhaws H., Heinrich H. “Classifying Biosiguals with Wavelel Networks,” IEEE Enginesring in
Medicine and Biology Magazine, (19%6).

9- Engelese W A H. and Zeelenberg C., “A single scan algorithm for QRS-detection and fearure
extraction,” TEEE compul. Card., Long Beach: IEEE Computer Societ;, pp. 37-42 (1979).

10- Fraden, I, and Neuman, MR, “QRS Wave Deteclion,” Med. Biol. Eng. Comput. vol. 18, {1980).
12- Foesen, GM., Jannen, T.C., Jadallah, M.A., Yales, S.L., Quint, S.R, and Nagle, HT., “A
Comparison of The Nnise Sensitvity of Ninc QRS Detection Algorithms,” IEEE Trans. Biomed. Eng.,
BME-37, pp. 85-98, Jan. (1990),

13- Gustafson, D., et al. Awtomaled VCG Interpretation studies using signal Analvsis Techmiques. R-
1044 charles stark Draper Lab., Cambridge, MA, (1977).

I4- Hamilton, P.5., and Tompkins, W.5., “Evaluaiion of QRS Deicction Algorithms Using The IBM
PC.” Proc. of (he [EEE/Seventh Annual Conference of the Eng. in Mcdicine and Biol. Sociery.  (1985).
15- Holsinger, W.P.. e1 al., “A QRS Preprocessor Based on Dugital Differentiauon,” IEEE Trans.
Biomed. Eng.. vol. BME-8, pp. 212 -217, (1971).

16- Kohn, A. F., and Furvie, 8.5, “Safery In Mcdical Signal Analvsis,” TEEE Eng. in Medicine and
Biclogy Magazine, vol. BME-10, no. 4, pp. 36-62, Dec (1991},

17- Lin, C8, Yu, B.C, Lee, M., Chen ] 1. and Chen, C.Y., “A Nonlinear Digital Filter For QRS-
Complex Detection.” IEEE/Sevenih Annual Conf. of the Eng in Medicine and Biol. Soc., {1985).

18- Mahowdeanx, P. M. et. al.,, “Simple Microprocessor-Based Svstem for On-Line ECG Anakysis”,
Med. Biol, Eng. Compuc, vol. 19, pp. 497-300. (1981).

19- Menard, A. e1. al., “Dual Microprocessor Svstem for Cardiovascular Data Acquisition. Processing
and Recording,” in Proc. IEEE Int. Conf. Industrial Elect. Contr. Instrument., PP. 64-69, (1981).

20- Okada, M, “A Digilai Filier For The QRS Complex Detection.” [EEE Trans. Biomed. Eng.. vol.
BME-26, pp. 700- 703, Dec (1979).

21- Panm, )., and Tompkins, W.J,, “A Real-Time QRS Detection Algorithm results,” IEEE Trans.
Biomed. Eng., vol. BME-32, pp. 230- 236, Mar. (1985),

22- Qiuzhen Xue, Yu Hen Ho, and Tompkins, W. J. , “Neural-Network-Based Adapive Maiched
Filtering for QRS Detcction,” IEEE Trans Biomed. Eng., vol,.BME-19, No. 4, April. (1992).

23- Ruoha A, Sallimen, 5., and Nissilla S.,“A real-rime microprocessor QRS detecior system with 1-ms
liming accwracy for the measmrment of ambulaory HRY,” IEEE Trans. Biomed. Eng. Vol BME-44,
PP.159-167, March (1997)

24- Saleh, M. M. Comparison of the noise sensitivity of QRS delection algorithms. M5c. Thesis,
Mansoura Universaty, (1993).



E. 55 F.E.Z. Abou-Chadi, H.S. Ragab, and H. H. Soliman

Algorithms based on linear and nonlinear filtering, (c) Algorithms based on neural
networks, and (d) Algorithm based on wavelet trangform and wavelet neural networks.

The detection timing accuracy and detection reliability of the selected algorithms
were tesied with two types of ECG darabases: six tapes of the standard American Heart
Association Database (AHA) and a synthesized normal ECG (used as a gold standard )
corrupted with six types of simulated noise: (a) electromyographic interference (EMG),
(b) powerline interference, {(c) basetine drift due to respiration, (d) abrupt shifts in the
baseline, (e) motion artifacts, and (f) a composite of the above noise types. This
approach has been adopted to test the QRS detection performance of a real-time
microprocessor system published recently (Ruha, et al. 1997). It provides a precise time
reference to be used for comparison. This cannot be achieved with natural ECG
recordings as the time reference is unknown. Also, the annotations in the AHA records
cannot be used as time references as the time resolution in those records is low due to
the low sampling frequency of 250 Hz used.

It has been found that algorithms based on digital differentiators give generally
jower performance as the differentiation process has frequency characteristic that
amplifies the signal and the noise occuring in the region between the highest ECG signal
frequency components (here, 100 Hz} and the Nyquist frequency (in our case 125 Hz),
thus increasing the algorithm efficiency.

Algorithms based on linear digital filtering give higher performance even under low
signal-to avise ratios. However, these algorithms suffer from two prohlems: 1) the signal
passhand of the QRS complex is different for differemt subjects, 2} the noise and QRS
~omplexcs passbands overlap. Moreover, the linear phase characteristics of these filters
do not cause phase distortion to the input signal, however, they cause certain time delay.
This is clear from the detected time advance (TA) and time delay (TD) in the position of
the detected QRS complexes. Algorithms based on nonlinear filtering give good results,
algorithm D3, is able to discriminate between noise and QRS complexes, algorithm D4
give good results by using the length of the window suitable 1o the length of the QRS
complex, a considerable time advance and time delay was obtained for these algorithms
this is referred to the effect of the non-linear phase characteristics of each filter that
affect the location of 1the QRS peak.

As for the algorithms based on neural network based adaptive matched filtering
can model the inherently nonlinear ECG signal and detects all QRS complexes , however,
it detects time delay and time advance.

The wavelet transform algorithm, can detect all QRS complexes in the precense of
extreme noise but it detects false positives, as dunng transformation process, the R
wave is transformed into more than one peak with high amplitude, and this algorithm has
the advantage of saving memory and computation time.

Algorithms based on neiral and wavelet network give the highest performance and
the most accurate timing. Thcy can detect all QRS complexes without time delay nor
time advance. However, the wavelet network algorithm has the advantage of saving the
computation time, as the features of the signal were extracted in rhe wavelet domain and
were sent 8s wput to the neural-network. For this reason it has half the learning time
required for algorithm of multi-layer-forward neural-network.

The ability of the algorithm to detect all the QRS complexes without any false
positives depends on lhe method for selecting the value of the scaling constant by
performing a tuning procedure for each algorithm on each type of noise, while each
algorithm has a maamum potential Lo discriminate between noise and the QRS, which
depends on the optimum selection of parameters
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IX- Conclusion

This work has been concerned wirh automatic detection of QRS compiexes The
main focus has been to compare tbe performance of the QRS deteciion algorithms under
different circumsiances of low signal-to-notse ratios. Advanced digital signal procassing
technigues are applied to investigate the timing accuracy and rehabilitv of each algorhm
and to find out why some QRS detection algomnthins are more sensitive to certain v pu of
noise than others A detailled cvaluation procedure was performed to wienul- the
algornhm that possesses the highest performance in Lhe presence of various tvreys of
interfering noise and al difTerent coise wyels,

Sevenmteen QRS detection als » it™: e wwere selected for this work, lrom a leratnre
survey according to Ltheir simplicit, uud lugh performance The selected algonthms were
then classitied into four hasic cpes G0 Aluerithims based on digital dilferentiitors, b
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based on differentiators and digital flters lie between 94% and 98%, while those of
algonithms based on neural networks and wavelet transform lie between 97% and 100%.

As for Tape 4207, the percentage of correct detection of algorithms based on
differentiators and digital filters lie between 95% and 99%, while those of algorithms
based on neural networks and wavelet transform lie between 97% and 100%.

Tape 8209 gives the best performance at all because it has R- wave with large
amplitude than the T and P. The percentage of correct detection of all the algorithms lie
berween 990 and 100%.

It can be conciuded that algorithms N1 and W2 can detect 100% of the QRS beats
existing in each tape. However, Algorithm W2 has the advamtage of consuming the
computation time.

Table-7 Resnlis of application of Algorithm Table-8 Resulls of application of Algorithm

Al to the AHA tapes A2 1o the AHA tapes
-
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The results of applying the selected algorithms to the simulated ECG corrupted
with composite noise are Hsted in Table-6. Composite noise can be considered as great
challenge as EMG noise simce six algorithms are not able to detect all beats, most of the
dlgonthms detect false positives. Algorithms AT, A2 A5, A6 and A7 give the lowest
rerformance Algorithm A4 detects 31 Leats with 6 false positives. and, algorithm AS
was able to detect all beals with 4 faise positives, 20 false negatives.

Algorithms based on linear and nonlinear filtering give good results, aigorithm D1
was able to detect 30 heats with 16 ms time advance, algorithm D2 detects 30 bears with
4 ms time delay and 12 ms time advance. Algorithms D3 and D35 detects all beats with 1
beat false positive. Algorithm D4 detects all beats with 8 ms time advance.

Algorithin based on neural network based adptive matched filtering N2 detects 29
beats with 3 false positives. Algorithm W1 detect ail beats with 10 beats false positives, 2
multiple detection and 48 ms 1ime advance. Algorithms N1 and W2 can detect all beats
without time advance nor time delay. They give the highest performance.

Table-3 The resulls of applyving the 17 algomthins Table-6 The resulls of appiying Lhe 17 algonhms

1o ECG corrupted with motton anifact noise. to ECG corrupted with composite noise.
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VIII- Results of the AHA databnses

The resulis ot applying the 17 algonthms on six ditferent AFA 1apes are piven in
Tables 7-23.  Since 60% of these tapes were obtained from inpatients, the tapes used n
this study contain differeni cases of abnormalities and the data suffer from baseline
wandering. The resulis oblained from Tape number 1201 are the worst, as it contains T
wave with high amplitude and the 8-T interval is nussed. The percentage of correct
detectionr of algorithnis based on differentialors and digital filters lie between 65% and
63%, while those of aigorithms based on neural networks and wavelet transform lie
between 90%% and 100%.

The results of Tape 2202 are better than tape 1201, [t hag T-wave with high
amplitude tn some beats, other beats have inverted T- waves. and the R- wave has
different amplitude. The percemtage of correct delection of algorithms based on
differentiators and drgitai filters liv between 30% and 93%, while those of alzovithms
based on neural networks and wavelet wranstorm lie betecn 92% and 100%.

The percentage ol correct detection obtained from Tape 8204 using (he algorithms
based on dilfercntiators and digital filters lie between 89°% and 97%, while those of
algorithuns  bascd on neural networks and wavelet ranstonm lie between 97% and [00%,
Tape 6206 wives also good resulls The percenlage ol correct detection of algorithins
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and wavelet transtorm give the best results they can detect all beats without time advance
nor time delay and it can be concluded that algorithms N1 and W2 are the best of all as
they can detect all beats without time advance nortime delay. However, W2 has the
advantage of saving the compuation time.

4 Abrupt Shift

The results obtained uging the simulated ECG corrupted with abrupt shift are listed
in Table-4. This type of noise is a slightly greater challenge than the baseline drift due to
respiration. Algorithms Al, A3, A4, AS, A7 and A8 were ahle to detect all heats.
Algorithm A2 give low performance as it detects only 70% of the toral number of beats.
Algorithm A6 is the worst, it detects only 40% of the total number of beats.

Algorithms based on linear and nonlinear filtering give good results, algorithms D1,
D4, DS were able to detect all bears and algorithms D2 and D3 detect 96% of the beats.

Algorithms N1 and N2 were able to detect ail beats. Algorithms based on wavelet
transform were able to detect ali beats with one beat false positive, 30 beats false
negatives, and 40 ms time advance.

It can be concluded that algorithms N1 and W2 give the highest performance. They
can detect all beats without time advange nor time delay.

Tuble-3 The results of applying the 17 algorithms ~ Table~ The resulls of applying 1lig¢ 17 algorithms

10 ECG corrupled with base ling drifi noise due lo ECG cerrupted with abrupt shifl noise,
1 respiralion.

TP |33 Eal T TA MO TP % _isctuhm TP F N m TA MO TP
Al B 1 90 i) '] ] I A o 3 6l ] 3 100%
A 4 5 i) 5 n Y .1, 2l 10 44 Lg Pl TO%
A T b o) A3 L) ] 39 G 1005
Ad ] ] L Ad 3 9 13 1 IO&‘
A% W L 106% | Al N 0 53 L ] 160,
Al W 11 L0t A | H 124 & i L)
aT ¥, B F 1 Hoey AT i q ! 0 ] 1 D0%
AR ¥ ] 5 a 1 DQ‘-*_W‘__ AR L | 30 a 3 e
[+ 44 [:] 0 0 [ i) 5 1] 9 100%
[s7] X L] | u p 0% 02 ) AQ M 9 D%
sz X A '] b 2 Jm;_ [ui] 29 36 2] Lo )
Db X + L] k. 0 10002 14 ] [ L ] 2 100
D L 0 10 o LOf%%. i 30 i} 0 1 3 LO0%,
i k1] S LA M 1 ] SH 1] a (O0%
N1 k.o i bl S Hi i H 10 3 2 100%
W x H 5T n 00 Wi i) | i & 1% 100%
W2 M B a J 1% W2 a0 ) 3 3 o 100%

5 Motion Artifact Noise

The results of applying the seventeen algorithms using the simulated ECG
eorrupted with motion artifact noise are listed in Tahle-5. Motion artifacts are much like
base line drift due 10 respiration but having lower frequency and amplitude.

Algonthms Al, A3, A4, A5, A7 and A8 detect all the bears. However, algorithm
A2 detects 25 beats with 8 beats false positives and 7 samples time advance, algorithm
A6 detects only 20 beats. Algorithms based on linear and non-linear filtering give good
results. Algorithms D1, D4 and D5 detect all beats. Algonihms D2 and D3 detect 29
beats. Algorithm N2 detects 29 beats with 10 false negatives, 4 false positives, 3 samples
time delay and 2 samples time advance.

Algorithm W1 was able to detect all the beats with 2 false positive. Algorithms
Nland W2 can detect all the beals without time advance nor time dclay.
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Algorithms based con linear and nonlinear flteriug are able to detect the QRS
pears with a small number of false positives However, algorithms D2, D3, D4 are unabie
to locate all of 1he QRS complexes. It is possible that the QRS complexes are suppressed
along with the noise by the filtenng algorithms.

Algorithms based on neural network Nland N2 gave high performance wathout
false pesitives ner time advance or time delay They detect all bears with a small number
of false negatives. Algorithms based on waveler rransform can detect all the beats but
with a large number of false positives. Aleorithm W2 is the best of all. It detects all
beais without time delay nor rime advance since this type of algorithms has the ability to
learn. Moreover, it has the advantage of saving the compuralion rime

2- Power Line Interference

The results oblained from the sevemeen algorithms using the simulated ECG
corrupted with 50 Hz powerhine interference are listed in Table-2Z. These results are
considerably more better than those for the EMG interference. The frequency spectrum
for the simulated powerline interference consists only of the 50 Hz fundamenral
component, Most of the dgonthms gave good results. Algorithms Al, A2, A5 and AS
are able to detect all the QRS complexes wilh correct detection ot 96%%5-100%%,

Algorithms A4 A5 AS, and A7 give also the worst performance as in the case of
EMGC noise Algorthms based linear and nonlinear filtering give sood results as they are
able to detect all beats. As :or algorithms based on neural networks. Algorithm N1 can
detect all the beats withoul any false positives. lime delav nor time advance, Algorithm
N2 is able 1o detect all beats with 3 bearts false positives.

Algorithm W1 can detecr all beats with 60 bears false positives while algorithm W2
can detect all beats, withoul false positives nor time advance or ume delay Therefore,
algorithms N1 and W2 give Lhe best performance. They can discriminale between 50 Hz
noise and QRS complexes aud would always be preferable.

Table-1 The results of applning Lthe 1 7algonthms Table-2 The resulls ol applying e 17 algonthms

ta ECG cormupled with EMG noise to ECG corrupted with power line inlerference
N— — —
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v 27 ) u ‘7 Wy A} i W b - iy
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3- Bascl.ine Drifil Noise De 10 Respiration

The  results oblamed using the simulated ECG eomrapted swoth basenne dnft nose
due to respiration are hsted in Tavle-3 Baseline drt G wo respiranon presents o lesser
challenge to all of the alaorithms execept those based G amplitude and <irst denvative
All of the other algorishms ive Ldeal performance Ai by bused on neural nenwvork
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great deal of experimemarion was used to determine the different constants and
thresholds needed to detecr the QRS complexes to get the best form of adaptation. A
tuning precedure was carried out in order to determine the value for these constants.

V. The Software Structure

The software for the evaluation was writlen in C language and executed on an
IBM-PENTIUM-MMX-CPU 200 MHz computer. It consists of five major companents.
The collection of algorithms and digitized ECG data files make up two of the
components. A scoring algorithm and a routine to tabulate the resuits account for the
additional blocks. The fifth part is amain program which integrates the four medules.

V1. The Evaluation Criteria

As for the synthesized ECG data, the exact location of the QRS compiex is known
before the noise sources are added, the sconng algorithm developed by Hamilton and
Tompkins, (1985) compares the onset of the QRS candidate 10 a key array containing
the locations of all of the valid QRS onset, If the candidare onset falls between the actual
onset and the end of the QRS complex (a window of 22 sample points or 88 ms was
chosen), it is scored as a true QRS detection (TP). Ifthe candidare onset occurs outside
these boundaries, and less than the end of the T wave (200 sample points or 800 ms
following the actual onset), it iscounted as a false positive (FP), If Lhe candidate onset
occurs outside of these boundaries, it is scored as a false negative (FN). The percemage
of QRS complexes correctly detected is calculated at the end of eacl: run by dividing the
number of QRS complexes correctly detected by the iotal number of actual QRS
complexes. Since the search for the next QRS complex resumes at the next point
following the candidate onset, it is possible that the samc QRS complex will be detected
more than once. Only the first correct detection will be included in the scoring of QRS-
compiexes found or the measure of delav. Subsequent detections which fall within the
boundaries of the first detected QRS were classified as ultiple detection {MD).

An indication of the time delay (TD) and time advance (TA) are also calculated
after each run. If the detection occurs before ar after the actual onset but within the
proposed window (22 sample points), it is classified as an advanced or a late detection,
respectively. The number of sample points between he onset and the detection are
summed for all of the detections of that run. As for the AHA data, the number of the
QRS complexes detected was determined and then compared to the number of beats
registered in the tape.

V1I. Results of Simulated Database

1-_Electromyographic Noise {(EMG)

The results obtained from the applicatian of the seventeen algonithms using the
simulated ECG corrupted with EMG 13 listed in Table-1 {expressed in samples). This
kind of noisc represents the greatest challenge to the majority of algorithms as it
possesses proad-band frequency characteristics which overlap the frequency spectrum of
the QRS complex, the amplitude of the QRS is, however, considerably greater than the
noise. Only seven algorithms were able to detect zall the QRS complexes.

Algorithms Al, A2, A3 and A8 give high perforinance with 2 small number of
false posilives. Algorithms A4, AS, A6, AT have Lhe worst performance as EMG noise
has first and second derivative characteristics thal are similar to those of the QRS.
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fareel patterns are updated by shifting the (ire window one step forward, and the
weights of the model are updated by ‘he generalized deita rule with the error propagated
back-wards.

D- Algorithms Based on Wavelet Transform and Wavelet Neural Networks

Two algorithms based on the urilization of the wavelet transform and the wavelet
neural networks are considered. These are denoted by W1 and W2,

Algorithm W1

The algonithm was deveioped by Daubechies, (1992). The input array xfij
represents the ECG datasamples of length & which i3 an integer of power 2. The wavelet
transform 15 computed as

W) =Crel)+C*x(r + N+ C, " x(i +2) - C, *x(i + 3) 0<i<N-4
Hi+ H=Co*x(i)-Co*x(i+ N+ C *x(1 + 2} - C, *x(i + 3) 01 <N+
WN=6)=C,*x(0) = C,* (D)~ C, *x{r —6}+ C, *x{i - 5) 0<<i<N-4
HAN=-3)=C*x(0)-C,*x() - C, *x{i - 6) - C. *x{s - 3) 01 <N-+4

Search the waveform {y(i/] for the points which exceed a threshold value M given
as M =  Max [yt)], where C is a constant less than unity. Then the QR3S complex
cadidate occurs when yi) > M

Algorithm W3
This algorithm was developed by Dickhaus and Heinrich, (1996). It utilizes the
well-known multi-layer perceptron [MLP).
A wavelet neural network N can be described as an expanded percepiron with
so-called wavelel nodes as preproeessing units for fearure extraction. The wavelet nodes,
which are adjusted during the learniny phase, are modified versions, #((f -7,).a,), of a

basis wavelet #/). The nodes are described by a shitt parameter.r,, and a scale

rE
parameter, «,, which is inversely related to the node's trequency. These parameters
correspond to the variables of the wavelet iransform Formally, the node’s output, ¢, . 1s
defined as the inner product of the nade A, and the signal 5, wlhich is the wavelet net’s
mput  (the index ¢ = /, ..., & denotes the signal number]

Voo -

During the training phase, the feast-square error. £ . 7 (o, - }’J = mun
between the uet’s desired output vector, « . and its actual output, ¥, again has to be
minimized using, for exampie, a gradient echnique  Tius'he wavele! parainoas are
vared to reduce the errar E mocach iteration, using a gracene techuigue, This procedure
is repeated untid the net has settled down to a muimimum The ooaiplex Moret -2 et has
been chosen as the basis waveler.

[V. Determination of the Algorithm Parameters
Each algorithm in ihis studv is based on a s.zcific scheme prescrred in the

lirerature. However, they are not copies and should be coasiibe e as 70 0 aukioldaon
of the tundamental concept Each of them etnployed one or tnote o oo oo o- i, cleiter
as mwiuphers or as thresholds Lo some eases Lhese cortetow. o ostaa el

. L

lreratre. while @ others they were not compratble witl e - cab el vz A

E. 48
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outpat of the nonlinear whitening filter is a linear combination of the outputs of the
hidden units:
Yo=Y
q 7 M N
3= Lt =y Tud| v, b |
= =) n={
The generalized delta rule is used to update the weights in Lhe hidden layer. The
least-mean-square error of this filter is

=5l -Fus(Fun, f’\UI

= J=! 4

The hidden layer weights are updated using
Wiy =w +2ud x, +a(w;’ —w;’_f) 1=1l...q

where w/ = (wu,w .,ww)r is the weight vector connected from the input units to the j

th bidden unit; &, = y#/ (1 -yl )1)_6 1s the error term passed back from the upper layer;

a & the step size of a momentum term.

The second step is to select a template, and then to filter it using a whitening flter.
Then, a neurai-network-based recognition method is used to update the template
dymmically. The neural nerwork model used is a three-layer feedforward back-
prapagation model, which has a number of inputs to cover the QRS complex. Aftar the
ieaming process is finished, the neural network coefficients are stored for determining a
new template during the processing. Four recognized normal QRS complexes are kept in
thetemplate bank, and the newest template is the average of these four complexes, 1.e.

1 +
RS =— ) ORS,
ors =13 0850)

The corresponding most-recently-recognized QRS complex of the original signal
is sent to the neural network recognition mode!l. The model determines if the new QRS
complex is one which should be put into the template bank. The template was filtered by
the adaptive whitening flter synchronously with the filtering of the input signal. The
whitened QRS tempiate 1s

B 7oy ™
WORS(t), = QRS(1), - Y u, f{ZwUQRS(:)k_J b, k=1 . L-M
=1 b=t 4
where L is the length of the QRS tcmpiate vector; and .M is the number of input units in
the model.
Alter both the whitened signal and the whitened template have been obtained,
maiched fltering 1s performed. The output of the matched filter is

y ()= gwg&s:y. (i-i)

where WQRS is the whitened templatc and y,{f) is the output of the whitening fiter of

the original signal. The input ECG signals first go through an adaptive whitening filter
having as a key part the neural-net-based nonlinear adaptive noise removal filter. The
input layer of the neural net model gets the data vector from the ECG signal. In this case,

the input paitern is the data vector p{/ -/} = {v___!,y,_q_l,_ Y I}r and the larget pattern
is ¥ . The outpur of the modecl is the estimation of 3+ [n each epoch, the input and
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ime and frequency dependent processed version of the (npur signal, in which noise has
been reduced without distorting ECG components of interest.
Let .Y () represents the input ECG signal, then the filter output is ¥¢n). Then,
T

Y(n)= Y C,,Xx(n-k) M <n< N-M
k=-7
Searching across each 250 sample of Y(N) about the point which exceeds a thresheld Q.
Then QRS candidate occur ff ¥ (n) 2 QO

C- Algorithms Based on Neural Networks

Two algorithms based on the utilization of neural networks are considered, These
are denoted by NI and N2.

Algorithm N1

This algorithm developed by Beal R, and Jackson T, (1990). The learning rule is
the back propagation ruie. The first step is to initialise weights and thresholds. Then all
weights w, and threshold are set to small random values The actual output of each

layer is calculated

y, =1 Swx,

!
L=t a

and passes that as input to the next layer, the final layer oucsuts values Oy

Adapt weiglus starting from the outpur layer, and move backwards, using the equanon
w,{t+0=w,()-28,0,
where wu(r) represents the weights from node / to node ; at time 7, 7, isa gain

term, 5;:1 is an error term for pattern P on node

where 59} =k O_m[l - Op;)[fp; - Op;) for cutput units
and 5” =k Om(‘! - OF‘J‘)Z §Pk W for hidden units

Where the sum is over the & nodes in the layer above node ;.

Algorithm N2

This aigorithm was developed hy Quzhen XUE, ct al (1992) [iis based ona
neural-network-based nonlinear adaptive filler. It involves the addition of a nonlincar
hidden layer consisting of a number of nonlinear processing units Each of Lthe hidden
units produces a nonlinear imlermediare result

5 i
|
=f [ZW,})J(-_. -b,|

i=! i

C . . /
where f( ) is a sigmoid function defined as f{x)= ———-

3

{+e 7

where 7. is the temperature thar controls the noniineanity of the function The w v are

the weights which the input units o the lidden units. and the # 5 are the bias terms. The
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ya(”):[)’z(nr)]z i< n< N

Then a moving-window integration is used to obrain waveform feature
information in addition to slope of the R wave. It is calculated from:

)= (7 sl 04 - )= -2) 0]

where M is the number of samples in the width of the integration window.

Two thresholds I1 and 12 are automatically adjusted to float over the noise. This
are computed from:
Signal peak SPKT = 0./25 PEAKI ~ 0.875 SPKI  (ifPEAKI is the signal peak)
Noise peak NPKT = 0.125 PEAKT -~ 0.875 NPK] (if PEAKI is the noise peak)
THRESHOLD {1 = NPKI + 0.25 ( SPKI - NPKI) and THRESHOLD 12 =0.5 THRESHOLD I 1

The signal peak SPKI is a peak that the algorithm has aiready established to be a
QRS complex. The noise peak NPXIis any peak that is not related to the QRS (e.g.,
the T wave). The thresholds are based upon running estimates of SPKIand NPKI.
When a new peak is detected, it must first be classified as a noise peak or a signal peak.
To be a signai peak. the peak must exceed THRESHOLD Tt as the signal is first
analyzed or THRESHOLD 12 if search back is required.

Algorithm D4

Chung-Shyan Liu et al., (1985) developed an algorithm utilizes the median filter.
The inpu: signal X{m) is filtered by a median filter of window size 5(ie, M =2)
followed by a Hanning filter. Let the outputs of the median filler and Hanning window be
dencted by Y(n) and Y(n) respectively, then
Y, ()= median{X(n -2}, X(n -1, X{m) X(n+1). . X(2~2)] 2< n<N-2

Y,(n):%Yo(n-])+%}’0(n)+i-ﬁ,(n+L) I<n<N-|

A second median filter of window size 2A ~ /= 7to ,{n). The QRS-complexes

will be smeared owt. However, other components of the ECG. P-waves, T-waves, and
baseline wander wiil be reserved. Now, we denote the output by ¥,(n1)

T,(n)= medion [F(n =M )  Fln-10F () n+1) . YoM MT 0= N-M
To remove baseline drifts, compute the difference between ¥,{r}) and Y.,(n) as:
¥, (ny=7,(n)-7,(n) M< nv N-M
A QRS complex candidate occurs when a point in Y/ exceeds a threshold value
calculated from  TH =C. max [¥,(n}|

Algorithm DS

Afonso V. X, et al. (1995, 19961 developed an algoruhin based on filter bank (FB).
The algorithm decomposes the ECG into 32 uniform subband frequencics of the signal.
The 0 to 180 Hz frequency bandwidth of the input signal is «lecomposed inte 32 uniform
frequency subbands, /0 {0 5.623/, [3.625 0 11.23],... {I74375 to 180]1Hz,

The subband in the [0 1 3 625] Mz range, which contains most of the energy of
the P and T waves, 15 not processed in any wav In Lhe remaining subbands, Lhe signal
conponents are attenualed ta carkc.sswevels in fime perieds that correspond to the non
QRS region The QRS regon o e FCG 15 not modified in any of the subbands. The
processed subband signuls are then ro~amsimiseted by the synthesis fillers to result ina
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The squared differences between ¥,¢nj and V,(n) was computed as .

Y () =¥, (1)~ (0 m<n < Nem
The data pomts ¥,{n) are the output ffom the band-pass filter which form peaks at
locations where the spikes exist in [F,/n s/

The next step is to compute the modified waveform ¥ (n/ as:

Ymj=Ynil 3 k) [ m<n < N-m
kxp-m
Then a rectification procedure is carried oul. A weight is placed on i as follows
Yiny=k . Y,in; m<in< N-m

where k=1 if fKmi-Im-mj. [Ym-Ym+m]=0
k =0 otherwise
Then a QRS candidate occurs when Y,/ n) = i where 4 is an arbitrary threshold.

Algorithm D2
This algorithm was developed hv {Engelese and Zeelenberg 1979). The ECG is
passed through a differentiator with a 62 5 Hz notch filter
Lim=X{n)—-X{n-1 I < n <N
The differentialed, fillered data 15 then passed through a digital low-pass filter.
V) =¥m+t(n-Nreln-2)=40n-3)+Fin-+) I nm< NS
The output of the low-pass filter 1s scanned untif a pomnt with amplitude greater than a
positive threshold is reached, ie. if ¥,(i)> PS
If no other threshold crossing occurs within the 160 ms search region, the
occurrence s classified as a baseline shuft, otherwise, the following three conditions are
tested
condiion t. if  Kfi + j) < ¥ oyt 0
condition 2- if F{r + S NS 0 40 and Bt + &)< £S5 j < k < 40
condition3 if F{i+ )< NS 0 <) <40 and V(i +4&)Y>PY €< k< 40
and K- 1)< NS k- 1o
I any of the above conditions apply, Lthe ocenrrence is classified as o QRS candidare

Aldgorithm D3
This  algorthm was developed bv Pan and Tompkins, {1985) The difference
equatton of the low-pass hiter i

vim=2{n =) - yn - )= xln) - x(n 61 -x(n - (2} o o~ N
The difTference equation of the low-pass tilter is
¥ (a) = 32p{n - 16) - [}-;’{n )+ ) = wln - .:'D)j N
A five-point derivative 15 then caleulated
vam) = | -l-] {—yl(u—z) S D2y ) e 2 2 oo N-2
DS ¥ . ‘ ! i

After differentianon, the signal s squared posnt by poinr, i e

E. 4
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yifnt=ABS[x(n~2)-2x(n) +x(n-2} ] f<n< N-2
The rectified, smocthed first derivative is added to thg rectified second derivauve :
Yin)=yin)+y,(n) . 2<m<N-2

The maximum value of this array is determined and scaled to serve as primary and
secondary empirical thresholds & and £, respectively

k, (primary threshold) = ¢, . max [ v,(n) / 2% n < N-2

k, (secondary threshold )= ¢, . max [ y;/m) | 2<n<N-2

where ¢, and ¢, are scaling factors

The array of the summed first and second dertvatives is scanned until a point
exceeds %,. A QRS candidate occurs when the next six consecutive points must all
meet or exceed the secondary threshoid &, . ie. -

Y(i) > k, and  Y(r+ 1), V(i +2 ). Y(i-6jzk,

Algorithm AS

This algorithm was developed by Abou-Chadi and Saleh, (1992}, Tt calculates three
statistical parameters of the ECG signai for a moving window of length N = 23 samples
centcred at the km sample. These are:

o f £~m ) ;-{ £em 2
Mean value X, = v 3" X, Standard deviation &, = [— 3 [X, - Xk]
Y o zk-m ]J tUor=e-m
. ! Km0 J._.Is_
Third moment M, = [? > (X. ~ Xk) ' where N = 2m - |
N eeem _

Athreshold value 7, 1s calculated for each sample using :he formula;
L =CXe+Coo +CM,
where C',, C,, and C, are constants to be determined empirically
The difference ¥  between two successive sampies .X7i) and X{i+1) is

i

formed, such that ¥rn) = Y¢n+1) - Xrn). A QRS candidare occurs when a point
X,
¥,

k+i

in X, exceeds the threshold 7, and the correspondu g hime derivatives ¥, and
change their sign

B- Algorithins Based on Linear and Nonlinear Filtering

Five algorithms based on the utilization of linear and aoniinear fltering techniques
are considered. These are denoted by D1- D5,

Algorithm D1

This algorithm was developed by Okada (1979) The fir.r “tep. is to smooth the
ECG data using a three point moving average filter.

rm=fXn— 1)+ 22X+ Xn- 1)) 4 {7t N-f
The output of the moving average filter is passed through a low-prws filter Let 7,7
denote Lhe output from the low-pass filter:

no-m
Z Yiks b 7 N

= -m

Yin) =
' 2m+ 1,
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points which exceed the negative (descending slope) threshold (%5) *All data points in the
ECG between the onset of the sing slope and before the end'of the descending slope
must meet or exceed the amplitude threshold, ie. S

Y. yfi+1), yfi+2) >ps and y@). v(G-1) <ns

where i + 2} < j < (i - M), and M is the number of samples of 100-ms duration

depending on the sampling rate, and  x (i), x(i+ {}, ... x(j+ 1)z 4

Algorithm A4

Holsinger et al. (1971) developed a QRS detection scheme. The algorithm is based
on the determination of the first derivative from the raw ECG data. The first derivative
¥n) 1s calculated for the ECG using equation -

Yinp = Xin} -Xtn- 1) d<n< N

A QRS candidate is happened if Yn) > K/ and a number of consecutive
candidates () should be existed as follows .

YaLbYa= o, Friv2,and¥i—-J) » K2 where K2 is a constant threshold.

Algorithm AS
This algorithm was developed by Menard, (1981). The rst derivative is calculated
for each point of Lthe ECG, using the formula .
yn) = -2xm-2)-xin-) —xin~= 1) +2xfm-1) 2<n<N.2
A slope threshold () is calculated as a fraction (k) of the maximum slope for the
first derivative array.
S =k mex{yn] 2<p=IN-2
The first derivauve array was searched for points which exceed the slope
threshold. The first point that exceeds the slope threshold is taken as the onset of a QRS
candidate, i.e. y (i) > siope threshold (5)

Algorithm A6

This algorithm is a simplification of the QRS detection scheme presented by Balda,
{1977). The absolute value of the first and second derivative are calculated from the
ECG data. These are denoted by y,/n) and y,(n), respectively

yin)= ABS{x(n+tji—xtn-1)} L © on = N
y;ﬂu)' = ABS fx(n+2)- 2xpur ~ xin - 2} ] 2o N2
The two artays y,(#) and 3, (#) are scaled and then sumrmne
Yo(n) = Ayo(n) v By, (n) 2 un N2
where 4 and B are constanis greater than anity
This array is scanned uniil an empirical threshold Cismet iec :-fnj 2 C . Once

thiis occurs, the next eight samples are compared to the thresholy 31 iive or more of these
eight points mcet or exceed the threshold, a QRS candidate exist,,

Algorithm A7
This technique was developed by Allstrom and Tonpkins, {1985). The rectified
first denvalive is calculated from the LCG Jata

Yof )= ABSfxtn - {; - xin—{)} { o N
The reetified first derivative is then smeothe! usimg i Hanning fileer
ym = v =2y e o by / oo N

e s abed second derbvaes - aaleon s
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IIL. The Selected QRS Detection Algorithms

A large number of QRS detection schemes are described in the literature. It would
be impractical to describe all of QRS detection aigorithms because of their large
numbers. Several considerations were used to limit the number of QRS detection
schemes to reasonable cross section of the different basic techniques described. Only
relatively simple and newly developed algorithms were selected. A convenient way for
classifying the QRS detection algorithms has been adopted in this study as follows:
(1)Algorithms based on the use of digital differentiators, (2) Algorithms based on linear
and non-linear filtering, (3) Algorithms based on neural networks, and (4) Algorithms
based on wavelet transform and wavelet neural networks.

A- Algoerithms Based on Digitai Differentiators

Eight QRS detection aigorithms are based on numerical differentiation, either
first- or second-order. These are denoted by A1-A8

Algorithm Al

The concept for this aigonthm was taken from Gustafson, (1977).
Let Xfn) = X(0), X¢1)..... X¥N) represent a one-dimensional array of sample points of
the digitized ECG. The first derivative ¥y is calculated as.

¥t = Xfn~1) - Xfn-1) o< n N-i

The first derivative is then searched for points which exceed a constant thresheld C
ie ¥i)2 C and the next \hree derivative values: y (i—1),y (i~2) and y (i+3) must
also exceed C. If the above conditions are met, point X{(t) can be considered as a QRS
candidate if the next two sample poinis have positive slope amplitude products, i.e

i+l . x-Df and [yfi<2) xa+2)] = 0

Algorithm A2
This algorithm was developed by Fraden and Neumar, {1980). A threshoid (A) is
calculated as a fraction (%)of the peak value of the ECG.

A=k maex{fxn] 0<n<XN
The raw data is then rectified 1o remove the negalive signal values as follows :
Yo =X{m) 0 x(m)20 and  y(m)=-x(n) i x{n)<0 0<n<N
The rectified ECG is passed through a low level clipper
vy =y, n) if yn(n) zA and y(m=4 it pnp<d
The first derivative is calculated at each point of the efipped, reetilied array .
AGOESTCESESTCEY 0 niN

A QRS occurs when a point in y,{#) exceeds a constant threshold C, ie. y{i)>C.

Algorithm A3
This algorithm was developed by Moriet-Mahaudeaux, (1981). An amplitude
threshold {4) is calculated as a fraction /&) of the largest positive valued element of the

array of the ECG samptes for instance: A = k max [ x{n}] 0<n<\N
The first derivative y(n) 1s calculated at each point of xf#) such that -
ym o= xm - -xfm-{) g n - N-/

A QRS compiex occurs when three consecutive pomts in yf7t) array exceed a
posilive slope Lhreshold (ps) and followed witlin the next {64 sy by two consecutive
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l. Introduction

Automated analysis of electrocardiograms (ECG) is well established for use in:
real time ECG monitoning in hospital intensive-care units and operating rooms, Holter-
tape analysis, arrhythmia monitors, and high-speed processing of long-term ambulatory
ECG recordings. QRS detection is the most important part in automated ECG signal
analysis systems. After the QRS complex has been identified, the heart rate may be
calculated, the ST-segment may be examined for evidence of ischemia, or the waveform
may be classified as normal or abnormal. Thus a reliable QRS recegnition algorithm is an
important part of any ECG instrument.

QRS detection 1s a difficuit task, not only because of the physiological variability
of the QRS complexes, but also because of the various types of noise that can be present
in the ECG signal. Noise sources include muscle noise, artifacts due 1o electrode motion,
power-line  inmterference, baseline wander and T-waves with high-frequency
characteristics similar to QRS complexes. Most of the exasting ECG analysis programs
require a relatively noise-free digitized ECG, dara corrupted with noise must cither be
filtered or discarded. However, fillering and other signal processing techniques can alter
the signal and may result in the loss of clinically significant data: the processed signal
may be distorted by the flter itself’ in such a way that their interpretation leads to a
wrong diagnosis or an madequate decision (Kohn, 1991} These issues are important
design consideration for applications in reai-time heart inonitoring.

Previous studies reported by Friesen et al, {1990), and Saleh, M .M. (1993),
quantify the relative noise suscepiibility of several QRS detection algorithms However,
in the past five years, a number of QRS algorithms have been developed. These
algorithms are based on medern signal processing techniques such as: filter-bank, neural
networks, wavelet transfonns and wavelet neural networks. Theretore, it 1s required to
study and compare the performance of these new aigorithms in order to determine the
algorithm thar gives the best performance under different conditions of abnonnalities

The main objective of the present work is to investigate the performance of
seventeen QRS algorithms. These algorithms were chosen from the literature and are
characterized by their high performance. The work alsc presenrs a zeneral scheme to be
followed for evaluating the performance of the QRS detection algorithms using two
databases: a gold standard synthesized ECG comaminated with six tvpes of noise as a
first step of evaluation, and the standard \mnerican Heant Association Database ( AHA).

Il. Material

In order to evaluale the perfurmance of the QRS detecucn alzorithms we used two
types of ECG database. {1) A symthesizcd normal ECG {used as a gold standard ECG)
corrupted with five types of noise (Fig 1} These noise types were aiso combined to
form a sixth composite noise source Cuonsequently, the exact locations of the QRS are
known before the noise source is added. This approach was developed by Fricsen er al
(1990) for comparing the noise sensitivity of QRS detection algorithims. It allows
accurate neasurement of the ability of the algorithm to detect QRS complexes and to
locate the onset of each complex in noise-corrupted ECG as well as in the noise-{ree
ECG. The level of each type of noise was chosen te simulate the worst case that can be
met n true records. (2) Six selected tapes of (he Standard American Fe it Associadon
Duiabase (AL}, Fig 2 shows an exainple of an AIA record



