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ABSTRACT

The problem of heat conduction in a semi-infinite macro-periodic
layered media is treated by applying the effective modulus model. This
model describes the micro-morphic effects or the effects due to the
micro-periodic structure of the rigid body on the transient heat
conduction. In such model the problem is described by two coupled
partial differential equations. The Laplace transformation with respect
to the time is used to solve these equations. Inversion of the resulting
expressions is carried out using the convolution theorem. Two different
problems have been solved. The first problem is of the first kind of the
boundary conditions while the second problem is of the second kind.

Numerical analysis of the obtained solutions is also presented for two

different kinds of two alternating layers.

INTRODUCTION

The study of heat conduction through multilayered media seized a
great attention during the last two decades. This is due to the numerous

applications in engineering ficlds such as design of the wall of industrial
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furnaces, rockbeds, chemical reactors, nuclear reactor and
constructions.

A variety of purely numerical methods have handled successfully the
heat flow calculation in multilayered mediums. Nevertheless, analytical
approaches remain of interest to designers since they give more
synthetic insight into the influence of each parameter. The analytical
methods are generally based on separation of variables in the heat
equation, Green's functions and integral transformation (Fourier and
Laplace transformations) [1, 2].

Many papers have been presented to study heat conduction problems
in pericdic laminated composite. Furmanski [3] studied thc heat
conduction in a two-component medium for both regular (periodic) or
irregular (chaotic) inner structure of the medium. The enecrgy balance
equation which describes the heat transfer processes in two components
was derived using the ensemblc-avefaging technique. Some examples of
application of the theory are presented in calculation of the interaction
coefficient for different kind of composite materials (periodic laminated
composite, composite reinforced with unidirectionally aligned fibbers
and composite with dispersion of spherical inclusions).

Auriault et al. [4] presented a macroscopic modeling of heat transfer
in periodic composites in the presence of interfacial thermal resistance
.The method of double-scale asymptotic developments is used to
determine the interfacial thermal resistance. Five characteristic cases
are considered related to different relative values of the barrier
resistance to the resistance of the components. The first three models
are one-temperature field models whereas the last two are two-

temperaturc field models. To illustrate the five corresponding
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macroscopic models, a layered medium is investigated which permits
analytical results.

Wozniak et. al. [5, 6] presented a new approach to modelling of
nonstationary heat conduction problems in micro-periodic composites.
The refined averaged model of a rigid heat conductor with micro-
periodic structure is formulated. This model describes the effect of a
microstructure length dimension in the time-dependent heat transfer
problems.

Ignaczak et. al. [7] proposed a formulation for one-dimensional
boundary value problem for a periodically layered plate using the
refined averaged heat conduction theory. The uniqueness theorem for
the problem is proved under the sufficient condition upon which the
second law of thermodynamics is satisfied for the smeared layer
problem and using a global thermal energy conservation law associated
with the problem. Also, solutions of two particular initial boundary
value problems are presented. One of the two particular solutions
represents a temperature field in the layered semispace due to sudden
heating of the boundary plane, while the other stands for a temperature
field in the semispace produced by a laser surface heating.

Matysiak et. al. [8] considered the problem of transient heat
conduction in a periodically stratified medium consisting of a large
number of alternating concentric cylinders of two homogeneous
isotropic rigid materials and in a rotationally periodic cylinder
consisting of a large number of circular homogeneous isotropic rigid
sectors. The equation of the homogenized models with microlocal
parameters are derived taking into account certain microlocal effects

connected with the microperiodic structure of the considered
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composites. Some problems of temperature distribution in composite
cylinders are considered as an application to the presented models.

The problem of heat condition in a half-space medium consisting of a
periodic two alternating layers is considered by El-Zebidy [9]. The
problem is treated in frame of the refined averaged theory. The solution
for the temperature distribution is obtained by using Laplace
transformation technique. Inversion of the resulting expression is
carried out using the residues theorem. Numerical analysis of obtained
solutions of the problem is also presented for born-epoxy layers.

In this paper, the problein of heat conduction in a semi-infinite
periodically multilayered medium is solved in frame of effective
modulus theory. Section two contains the basic equations of the effective
modulus theory. In section three, we present a solution of the problem
of heat conduction in a semi-infinite periodically multilayered
composite subjected to a boundary condition of the first kind. In section
four the same problem which presented in section three is solved but
the boundary condition is of thc second kind. In section five, a

numerical analysis and conclusions of the solutions of the two problems

are presented.

THE EFFECTIVE MODULUS MODEL
The effective modulus model theory [10] takes into account certain
micromorfic effects resulting from the fine periodic structure of the
body. If we consider a rigid body occupies a regular region Q in the
Euclidean 3-space referred to Cartesian coordinates system. The
Cartesian coordinates of points of Q wil be denoted by
x=(x"} i=1,2,3. We also introduce in Q a system of curvilinear

coordinates X = (X*), @ =1,2,3. Setting x = x(X), XeQ,where Q,is
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a regular region in R’ Functions x(.) = (x;(.)) are assumed to be single
valued and continuously differentiable except possibly at some points,
lines and surfaces.

Let 9(X,t)=T(X,t)+1,, t€R be the absolute tempem-ture' field
defined in Q, where 7, is known constant reference temperature. Also
let A(X)=(A% (X)) be a matrix inverse to Vx(X) = (x/, (X)). The heat
flux relation at x = x(X) and at a time instant ¢ will be assumed in the
form

R (X,0) = K7 (X, T(X, 1) 45 (X)T, (X, 1),

where K7()=K7() are the known components of the thermal
conductivity tensor. The curvilinear coordinates X =(X“)e Q, will be
assumed that they are related to a free energy function ¢(X,7(X,?))
and the heat generation g(X,7(X,?),7).

Define

K (X,T) = A7 (X)A? XK' (X, T),
The energy conservation principle has the form:

7| (X0 + g(X.T(X,0,0) = T(X,00,4(X,1), @2.1)

where ,u(X,t) is the entropy, the vertical line stands for the covariant
differentiation in the metric tensor

G(X) = (Gaﬁ (X)) = (xta (X)xi,ﬂ (X))> X eQy,
and where
B (X,0) = K (X, T(X, )T, (X,1),

—3p(X,T(X,1))
oT (X, 1) 22)

Esq. (2.1), (2.2) are assumed to hold almost every where in Q (i.e. for
a.e. X e , for which K“ (X,¢) are defined) and for every? € R .

uX,0)=
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Let (£',6°,£°) be a triplet of positive numbers, and define
£, =(00E",826%,528%), a=1,2,3. In order to express- the concept
"micro-periodic' medium, the following conditions will be assumed
1- For every Ze€ Q,,such that Z+£, € Q,, we have

p(Z) =p(Z+¢,),
o(Z,T) =@(L+¢,.T),
K"(Z,T) =K"(Z+¢,.T),

where p(X), X € Q, is the mass density.
2- The maximum distance d(x(X),x(X+¢&,)), X € Q, , is much smaller

than /,
max d(x(X),x(X+&,)) << I,

where /, is the smallest characteristic length dimension of region Q,
inR’.

3- For every AX=(AX',AX? AX®), such that ]AX“ <&% a=123,

then
(X + AX) = x(X) + Vx(X)AX,
holdsin Q2,.

Under aforementioned conditions the body under consideration will be
called a microperiodic composite. It has to be emphasized that a term

"periodic" is related to curvilinear coordinates X = (X%).
The effective modulus model is based on the assumption that the
temperature field has the form

T(X,0)=T°X,t)+n*X)T*(X,t), XeQ,, terR, (2.3)

where the functions 7°(), which called shape functions are known
continuous and differentiable almost everywherc functions, such that

7' (X)=n"(X+<,),

174



SOLUTIONS OF HEAT CONDUCTION PROBLEMS IN

50
jy;“(x)dX“ =0, a=1,23. (2.4)
0
The function 7°(.,¢) is called macro-temperatuare and the functions
T“(.,¢) are called the micromorphic parameters.
Let X, = (X(f‘) be an arbitrary but fixed point of , such that

- X°|<05¢%a=1,2,3

C(X,) =1
is a'subset of Q, . The average operator is introduced in the form
WO == v @ar@), | 2.5)
v C(Xy)

where ¥ = £'¢227 and dV(Z)=dZ'dz?dz’.
In this model the The conduction equations after lmearlzatlon take the

form {10]

; ):: (pc)@rTo(X?t),

g*(X.0)=0, | 2.6)

where
Re(X,0) = KP(X)T(X,0)+ K**(X,0T*(X,1),
g (X, ) =K**(X)T(X,0)+ L*(X,HT*(X,1), (2.7)
and

K7 (X,T) = 47 (X) 4] (X)(k"(Z)),
K=(X)= 47 A/ O @ T @), @8
L (X) = 47 (X)A4] XK (Z)n(2)n’(2)).

In the case of an isotropy there is K,”(X)=K(X)s ¥ XeQ, where
k(X)is the value of the heat conductivity coefficient. If both systems of
coordinates (X “),(x’) coincide, then A7 (x)=5%,G*(X)=5, and
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coefficients K%, K“*, [** in Eqs. (2.7) and (2.8) are independent of
X . In this case the governing equations take the form

hi(x.0)+ E(x1)=(pc)o,T°(X.1),
g(x,t)=0, (2.9)

where

ity = (R)T) (x.0) + (ke )T (x,1),

g (1) = (kn Y7 (X0 + (ki )T (x,0), (2.10)

PERIODICALLY HEATED SURFACE

Consider one-dimensional problem of composite semi-space with initial
temperature equal to zero. The surface temperature is changed to
T,coswt where I, are constant. The medium consists of alternating
layers of two materials having thermal conductivities %, k,, densities
p, and p, and specific heat ¢ and c, respectively. The thickness of the
first layer is /, and the thickness of the second léyer is /,, where

[ +1, = [is the thickness of the period.

Solution of the problem
From Egs. (2.9), (2.10) we have the governing equations in the form

(k(x))fo (x, t) + (k(x)l],x (x))T)lr (x, t)— (p(x)c(x))TO (x, z‘) =0,
x>0 3.1

(e  CTL (1) + (ke (e (DT (x2) = 0,

with the initial and boundary conditions

T°(x,t)=T'(x,t)=0 at ¢ =0,
7°(x,t) = Tycoswt at x =0, (3.2)
To(x,t)—>0 as x —> oo,
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where 77(x), (k(x)), (p(x)e(®)), k)1, (x)), and {k(x)7,(x)7,(x)) are
defined as follows [11]

—LA+£ 0<x<]
PR
nx)=
! Il
- — — l,<x<l
o, 4, 8

k(%)) = % [k(x)dx,
(p(x)c(x)) = % fp(x)c(x)dx, (3.3)
(@, (99 =5 [k, (x,

G377 () =7 [ (. (e,

Introducing the following non-dimensional parameters:

x o (k(x)r
(p(x)e(x)i*”’

0 T'(x,t
go(f,r)‘:—T——(Tx—’t)—, 91(5,7):___;_)6__)_,
0 0

then, the Egs. (3.1), (3.2) take the form

Kk (En (€D

(k(f)) ‘9,15(557)_80(§s7)20a

9% (&,7)+

3.4

, KEME) o N
e e e ¢
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and the initial and boundary conditions become

F(,7)=9(&1)=0 at 7 =0,
3°(§,r)= cos T at £ =0, 3.5)
8°(§,r)—> 0 as E — o0
where
2
o =2l (p(&)e(&))
1 k(&)

Taking the Laplace transformation to Eqgs. (3.4) and (3.5), we have
8 (&.p)+a9,(&.p)-p3°(£.p)=0

3.6)
9(&D+B9:(&p)=0,
and the initial and boundary conditions become
9°&,p)=9'(&p)=0 at r=0,
9, p) =—— at & =0, (3.7
p+o
3°(&,p)=0 as & — o,
where
GGG PERGING) a8
k(&) k()1 (E)m g (E)
From Eq (3.6); we have | :
9, p) =B 3, p) (3.9)
Eliminating g (¢, p) from Egs. (3.6), we have
—0 _ p ~0 ‘
$e(&,p) = —af) 4 (&, p) (3.10)

The solution of eq. (3.10) which satisfies the boundary conditions (3.7) is
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) (3.11)

8 (£, p)=—E—exp(- Vi
P+ a)l 1ﬂ1
In order to inverte the above function to the original variable 7 we use
the convolution theorem and tables of the inverse Laplace
transformation [12], then we get

£2

P(E, )= — e \/——T '[cos[a) (r —u)] (u)' ex p(_zl—t((l—ea—ﬁl—
(3.12)
From Eqs. (3.9) and (3.12) we get
ppip exp(—& ) (3.13)

9' (&, p) =
©.p) (pz’*‘wxz)\/(l'alﬂ)) 1- aﬁ]

In the same manner we can obtain 91(6,7) in the form

- Zu)(u)_?b X

9'(&,7) = f—_(l — j( ]ﬂl

A _
(4u(1 ) )) cos[w,(z —u)]du . (3.14)

Differcntiating Eq. (3.12) with respect to &, we obtain the gradient of
the macro-temperature in the form

0 - -1 f 52 _ —TSX
G e L a0

~&? .
exp(——————) cos[w, (7 —u)]du (3.15)
4 (1~a1ﬂ1) l
Notice that one can obtain the solution for the homogeneous medium
from the above solution. For the homogeneous medinm ¢, = 5, =0,
from Eq. (3.14) we find that $'(&£,7)=0, and the temperature in
homogeneous medium 4,(£,7) from Eq. (3.12) takes the form
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"gh (531) =

23_7; Jcos[a)l (z —u)] (u)_? exp(——i—i)du R ‘ (3.16)

which is the temperature in a semi-infinite homogeneous medium has

the same initial and boundary conditions of this problem.

TEMPERATURE IN A LAYERED SEMISPACE
SUBJECT TO STEADY PERIODIC SURFACE
HEAT FLUX
Let us consider the same problem treated in section 3 but in this
problem the initial temperature of the body is 7; whereT; is a constant
and the surface temperature is subjected to a heat flux given by

PNOAC)

X
periodic oscillations and Q,is a constant surface heat flux.

=aQ,coswt, where a is a controlling factor for stecady

Solution of the problem
- As in the Section 3, we have the governing equations in the form

g,zfg“ (é:’p)'*'alg,;(é:ap)—pgo(f,p)+l =0,

4.1)
-1 —0
3'(&,p)+ £ 96(8,7) =0,
and the initial and boundary conditions become
@O(g,p):i at 7=0,
p .
—0 p
()¢ (& p) =aly—"— at £=0, (4.2)
p + oy

9’ (&, p) Is finite as &>,

where «,, f, have the same definition as in section 3 and

O pE)e(®))
- (k(E))
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From Eq (3.15)> we have
8¢ p) =535 p) 43)

Eliminating 9 (&, p) from Eqs. (4.1), yields

_0 1
9z —— P 9 pn-—m 4.4
(é: p) ( 1ﬂx) (g p) (1_alﬁ]) ( )

The solution of Eq. (4.4) which satisfies the boundary conditions (4.2) is

56y = Hfi=ef, — ‘/— exp(-¢ |-—E— aﬂ 1 4.3)

p

aQy

where H =
k()

In erder to inverte the above function to the original variable 7 we use
the convolution thecorem and tables of the inverse Laplace
transformation, then we get

H,/l—a ﬂ1 ]'((1 52 —21[)(1[)—%.><

¢ (5’7) ) 2a)l‘/}; _alﬂl)
- : N .
exp(4u(1 = alﬂ]))sm[a), (t—u)]du+1 (4.6)
From Eqs. (4.3), (4.6) we get
ﬂ1
8¢ p) =5 +601 ( 4 - a[)’,j (4.7)
In the same manner we can obtain 9'(£,7) in the form
GY(&,7) = I( ) exp(—ij cos[w, (7 —u)]du
2 1:81 du(l -, ) l
(4.8)
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Differentiating Eq. (4.9) with respect to £, we obtain the gradient of the
macro-temperature in the form

0 e . £ B
92(£,7) = T u-af)
D)= s J( Zu(l—alﬂﬂ)u

eXp(ag%—ﬁl—)jsm[wl (t —u)]du . (4.9)

Notice that onc can obtain the solution for the homogeneous medium
from the above solution. For the homogeneous medium o, = f =0 ,
from Eq. (4.8) we find that 9'(£,7r)=0, and the temperature in
homogeneous medium 4,(&,7) from Eq. (4.6) takes the form

-S

il f(& - 2u)(u)~§ exp(—Z—z—) sin[e, (v —u)}du ,
» 1

-9},(5,2') = Za-)\/;

(4.10)

which is the temperature in a semi-infinite homogeneous medium has

the same initial and boundary conditions of this problem.

NUMERICAL RESULTS AND CONCLUSIONS
In fhis section we present a numerical analysis for the analytical
solutions obtained in the pervious two scctions. It is assumed that the
medium consists of two alternating layers. The thickness of the second
layer is three times the first layer. Then the shape function given by

Eqgs. (3.3); will take the form

—x+é 0Sx£l/4,.

n(x)—_- . s (5.1)
- 1/4<x <1,
3 24

and so the non-dimensional shape functicn takes the form
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—§+é- 0<£<1/4,
n(£)= £ s | (5.2)
2~ VA< Z<l1.

The numerical results are presented for two types of materials. Thesc
types are
1. Boron-Epoxy

2. Boron-Aluminum
The physical properties of these materials are presented in table 5.1 and

the numerical values of the parameters «,, §, are presented in table 5.2.

Table 5.1 the physical properties of the materials used in calculations.

Conductivity Density Specific heat
Substance k p c
cal/sec cm°C gm/em’ cal/gm°C
Boron 7.648x 107 2.32 0.2451
Epoxy 8.365x10™ 1.14 0.4498

Table 5.2 The numerical values of the parameters used in the effective
modulus model. ’ '

[24

i ﬂl
Boron-Epoxy -0.670588235 | -0.859296482

Boron- Aluminum | 0.326398485 | 2.820238892
In Figs. 1

through Figs. 6, the curves labeled with the numbers 1, 2, 3 are referred
to the values calculated at the first, second and third interfaces of the

layers respectively. Figures 1, 2 and 3 are related to the problem of
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periodically heated surface while figures 4, Sand 6 are related to the
problem of steady periodic heat surface heat flux.

Figs. 1 show the non-dimensional macro-temperaturc $°(£,7) given
by Eq. (3.12) versus thc non-dimensional time 7. The macro-
temperature is calculated at the first three interfaces of the layers. The
results obtained for the value o, = 0.1. Figs. 2 illustrate the dependence
of the total temperature (&, 7)at the first three interfaces on the non-
dimensional time 7. Figs. 3 present the variation of the oscillation of
temperature gradient A3,(&,7) between adjacent layers with respect to
the non-dimensional time 7. Also, the calculated values are presented
at the first three interfaces of the layers.

In Figs. 4 we present the variation of the non-dimensional macro-
temperature which is given by Eq. (4.6) with respect to the non-
dimensional time 7. The macro-temperature is calculated at the first
three interfaces of the layers. The results obtained for the value o, =0.1
and Q, = 4.7769179x10™> Cal/Sec.cm’. In Figs. 5 the non-dimensional
total temperature $(£,7) is plotted as a function of the non-dimensional
time 7 . The results are given for the values at the first three interfaces
of the layers. Figs. 6 present the variation of the oscillation of
temperature gradient A3,(£,7) between adjacent layers with respect to
the non-dimensional time 7. The calculated values are presented at the
first three interfaces of the layers. .

The main feature of the effective modulus model is that it describes
the micro-morphic effects in a temperature distribution due to micro-
periodic structure of the body. From the numerical results which are
presented in figures 1-6 we can coclude that

o For the laminate consists of materials of low thermal

conductivity, the values of the total temperature is very close to
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the values of the macro-temperature 3°(£,7)and then the
values of the 9'(&,7) are very small and can be neglected. But
this is not true for the laminate, which contains at least one
material of high thermal conductivity, where we note that the
values of 9'(&,7) are not small and can not be neglected.

o For the medium made of ]Jaminates consist of two materials, both
have low thermal conductivity, the values of the total
temperature $(&,7)are higher compared with the total
temperature of the medium if one material is exchanged by a

material of high thermal conductivity.
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