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ABSTRACT 

In this paper, a method of lines is proposed for solving partial 

differential equations. A suitable spatial discretisation is introduced, 

then the numerical examples show that the method of lines is feasible 

and very effective for solving parabolic problems. I 

I . . 

INTRODUCTION 

The method of lines, MOL, is an approach to the numerical 

solution of quite general partial differential equations, PDE's , that 

involve a time variable t and one o r  more space variable x,y, ... .The 

partial derivatives with respect to the space variables 

are discretized to result in an approximating system of ODE'S in 

the variable t . Two of the factors influencing the performance of the 



method of lines are the choice of a spatial discretisation niethod and the 

positioning of the spatial discretization points. 

The points should be chosen so that the computed solution accurately 

models the exact solution to the PDE . Once the spatial mesh has been 

chosen, it is desirable to integrate the ordinary differential equation 

ODE system in time. With just sufficient accuracy ,so that the temporni 

error does not significantly corrupt the spatial accuracy. 

The purpose of this paper is to present a good spatial discretization 

method with diverse number of points, which introduce more accuracy 

when applied method of lines to solve PDE's as illustrated in section 

4.This paper is structured in the following way, in section 2 new 

derivation of analytical form for approximation the spatial derivative 

was presented. This allows the main contribution of the paper to be 

given in section 3 where this approximation was used in solving PDE's 

by the method of lings. Finally, in section 4 discussion of the numerical 

experiments is preseated. 

DERIVATION OF ANALYTICAL 
APPROXIMATIONS FOR FUNCTIONS 

We turn now to the production of analytical approximations for 

functions defined explicitly, that is, in closed form. Such functions may 

include polynomirab, infinite (Taylor's) series in powers of x, rational 

functions, and so on . We consider the function f(x) defined in 0 s x S 1 

,the analytical series is givgn by 

f(w)=C a i w y i  
1 = 0  

(1) 
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In numerical practice we cannot use the infinite series, and we rely on a 

finite approximation of suitable accuracy. 

This is obtained most obviously by truncating the series (1) a t  a suitable 

point, giving the polynomial 

where 0 X 5 17712 , n2=2,4,6,. . . . . . . ..and we consider y (Y) E C" 
If we approximate y(x) by constant, linear function, second order 

polynomial, and so on , to the m order polynomial, this leads to m + I 
equations in nz + 1 unknowns. 

We can solve the resulting system analytically to obtain . , as terms 

of x variable, and this present-an approximate to. the function f(x) . If 
we want to approximate the first derivative off (x) we differentiate the 

result, and similarly to the higher derivative of f(x) . The resulting of 

our computing presents in the following tables: 

i-By using three points: 



SI-IARAF & BAKODAII . 
thus, the approximate for the first derivative: 

1 
where rc i , i = 0,1,2 factored by -- . For the second derivativc 

2ih' ............ -. . .................................... 
i I, I a"l i n o  1 a"? ................. i .- -.i -. ..i -. - J 

' 4  I j 1 -3 1 -1 

where a"i  , I = 0,1;2 factored by 2ih ' 
ii-By using five points: 

4 
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Thus we can compute the first, second, third ,and fourth derivative as 
follows : 

the approximate for the first derivative 

>- "4 

The approximate for the secorid derivative 

The approximate for the third derivative 

The approximate for the fourth derivative 
,111 I I I 
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iii.- By using seven points : 

And from this system we can compute an approximate to the first, 
second, third, 
fourth, 5'" and 6'" derivatives as follow 
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The approsinlate for the 51h derivative 

The a ~ ~ r o s i r n a t e  for the derivative 

, i= 1,2,3,4,5,6 factored by 

iv-By using eleven points: 

We cannot use the 11-point formulas naturally in all numerical 

MOL applications. If we could be assured that the spatial variation of 

the POE will always be a polynomial, this would be logical But in 

general, this will not be the case .Also all of the preceding 

approximations for the derivative a re  based on polynomials. However, 

polynomials of increasing order have derivatives with an increasing 

number of roots. 

For example ,the fourth-order polynomial, which is the basis of 

table (I), differentiates once to a third order polynomial that has three 
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roots; a t  each of these three roots, the polynonlial will therefore have n 

maximum o r  a minimum, suggesting that it can oscillate between three 

maximum and minimum values. Similarly ,a tenth- order polynomial 

will have nine maxima and minima, and it'will in general oscillate 

between these nine values. in other words, a s  the order of the 

approximating polynomial increases, the possibility of unrealistic 

oscillation in the numerical method of lines solution of PDE also 

increases, and this is frequently observed. Schiesser [4] concluded that 

the fourth-order formulas of table (1) a re  good compromise between 

accuracy, and the minimization of oscillation. Other approximations 

can be used that might be better behaved (not have the oscillation of 

polynomials). 

In fact, essentially any approximation can be considered for the PDE 

spatial derivatives, and  some approximations will generally be found to 

be better than others. Thus, the numerical method of lines is really 

open-ended, and can be implemented in many ways. Commonly used 

approximations for PDE spatial derivatives include splines, finite 

elements, and weighted residual methods. We could obviously devote 

much more discussion to the development of spatial derivatives 

approximations, but in order  to keep the discussion to reasonable 

length, we shall consider a few other selected polynomial 

approximations that have been useful in the solution of a range of PDE 

problems. 

Method of Lines Approximations 

To illustrate MOL approximations, we consider the problem discussed by 

Hicks and Wei[2] : 



ct to x , the foll 
differential 

equations is o ~ $ P ~ & & ~ ~ ; ~ X ~ . ? , ~ g i ~ g . # :  ., 1% ;l.Fiig.J:,-.$ '.$c) ~ > $ ~ ~ : i ~ $ ~ $ ~  
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where we often consider a J .."i 1 as a finite difference 

d 2 u  du - approximation to - - - ax2 at 
In dealing with, for example," 5" point central difference 
approxinlations to the second 

partial derivative, Fisher[l] proposed that, a t  the end points, where 

all equal zero. This assumption leads to the requirement that 
- - 

UN+I-*N-l and U + v + i ) - - U ~ ~ - l )  . All equally spaced central 

difference approximations to the second derivative a re  symmetric in the 

values of the coefficients of the j about the central point. 

In [2] Hicks and Wei mentioned that; the use of a central difference 

approximation of order greater than "3" point requires explicit 

specification of dependent variable values outside of the interval of 

interest (-1,l) , and they consider the use of non central difference 

approximations. The well known second order finite difference 

du (xi ) Approximation for the first derivative --- is given by the equation 
d.K 

and this equation can be applied over spatial grid a t  points i = 2,3,4, ... , 
N -  1 
However, a problem occurs a t  the end points i = 1 and i = N , 

equation(3) requires U(ICN+I) which is also non existent. Schiesser [4j 

developed an 
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approximation for 
du (4 

that requires the use of the points u(x,) , 
nk 

u(x2) and u(x,) 

flu ( x ~ )  
Similarly, he developed an  approximation ---- He gave "3" points 

fix 
formula and" 5" points formula, indicate to "9" points formula and" 
11" points formula for first and second derivatives. Here we complete 
his work in "7" points formula and introclucc the derivative up to m 
order. h- 

As known any stable, convergent numerical algorith~n applied to 

solve the system of ordinary differential equations by MOL will then 

also produce a stable, convergent numerical solutions of the equations, 

and consequently produce a stable, convergent numerical solutions of 

the associated partial differentia1 equation. 
Whither or  not the use of higher order approximations will improve 
convergence depends on the improve of the higher eigenvalues. As the 

a' u number of points "n" used to approximate - is increased (keeping 
ax * 

N ,  the measure of number of divisions of the x interval, constant ), the 
eigenvalues of the approximating system of ordinary differential 
equation must be all real and negative. Equations (3) for n "3" point I 

centeral difference a re  in matrix form 
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1 
where 11 = - then: 

N 

where R, are the eigenvalues of A3 , Ek are  eigenvectors of A3 and Ck 

are  the Fourier coefficients of (2)' . 
The eigenvalues of Aj are  given by : 

Now, as  in [2] , we can show, by direct calculation (for 11 = 5,7,9,11) , 
that the recursion formula: 

hold. 

The significance of (5) is that each of the matrices, A,, , is a polynomial 

in A3 ,and therefore ,commutes with A3 ,which implies that A, has the 

same eigenvectors as A3 NOW the eigenvalues of A3 are all real and 

negative. Formula (5) can also be used to compute the eigenvalues of A,, 

, which are  always real and  negative, and which approach the 

eigenvalues of (1) with increasing N, as  shown by Fisher [I] . 
Hence, the formulas which introduced ,in section (2) give stable, 

convergent numerical solution of equation (1)' basis on the recursion 

formula (5) . 
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4. Computer Experimentatio~i: 

Siniplc example of the use of this method is given in schiesser [4], 

the testing that mas carried out  developing the method hzcl been shown 

in tables with (3,5,7) points formulas on parabolic problems. Similarly 

we can apply the same method on elliptic problems. Detailed results of 

tests on the hyperbolic problems a re  given in [3J 

Problem(1): Consider the special case of Heat coridr~ction cqu a t' ~ons:  

U t  = UXX (1) 
i 

m 
u(x,O) = sin(-) 

L 
u(0,t) = u(1,t) = 0 

(2) 
where exact solution for this problem is 

1 
For L = 1,O 5t50.5, 0 Ix51 ,N = 51 , h = - , the output from Matlab 

50 

Table(1) : MOL solution of equations (1),(2) using (3,5,7) points for 
spatial approximation 
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x = 0 for all t 

al l  -= -  at x = 1 for all 
ax 

with N = 51 and 0 < t  50.01 , we listed the results in table I1 
1 

For L = 1 , OStS0.5 y 0 1  x-< 1 N = 5 1  , A = - ,  
5 0 

I 

the out put from Matlab programs is in tabIe (11) 
" ------- "-'- - '  -"1'----------- --- p--- i x ~ O W  / MOL5 I MOL7 / Exact - -"-- 

1 
r-;-- / 0.8289 1 1.0000 / 1.0003 1 0.9931 ----- -'----....I--- .------- -- r ---- 

i 0.2 - 
1 0.9999 p.9945 1 1.0004 1 1.0001 

i------ r-----r--- 

j 0.3 / 1.0000 1 1.0002 b.9999 
: 0.4 

I --- </-I 1.0000 / 1.0001 

0.5 11.00001 1.0000 / 1.0000 i 
-- - -- -" - - --- - - -- _- 

Table(I1) 

CONCLUSIONS: 

From the example problems, it appears that the spatial 
approximation will give best result to any problem which can be 
solved using method of line if we used the 3point formula. These 
results indicate that the increasing of the points of the formula, 
cannot bring the MOL and exact solutions into closer agreement. 
Although this is logically theoretically. The previous results 
conformed on parabolic problems , but not necessary conformed 
on Hyperbolic or elliptic problems, where the 

Hyperbolic problems were sensitive by the increasing of 
the points of formula. However, the previous tables in section 2 
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1 .  

are too useful. tool for many kind of problen~s which based on , 
approximate function or derivatives. I 
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