# A GOOD SPATIAL DISCRETISATION IN THE METHOD OF LIN 

AMR A. SHARAF * , H. O. BAKODAH**<br>*Dept. Computer Science, faculty of Science, King Abdul Aziz University, Jeddah<br>**Dept. of Mathematics<br>Faculty of Girls, Jeddah, K.SA<br>Hobak@gawab.com


#### Abstract

In this paper, a method of lines is proposed for solving partial differential equations. A suitable spatial discretisation is introduced, then the numerical examples show that the method of lines is feasible and very effective for solving parabolic problems.


## INTRODUCTION

The method of lines, MOL, is an approach to the numerical solution of quite general partial differential equations, PDE's, that involve a time variable $t$ and one or more space variable $\mathrm{x}, \mathrm{y}, \ldots$. The partial derivatives with respect to the space variables
are discretized to result in an approximating system of ODE's in the variable $t$. Two of the factors influencing the performance of the

## SHARAF \& BAKODAH.

method of lines are the choice of a spatial discretisation method and the positioning of the spatial discretization points.

The points should be chosen so that the computed solution accurately models the exact solution to the PDE. Once the spatial mesh has been chosen, it is desirable to integrate the ordinary differential equation ODE system in time. With just sufficient accuracy, so that the temporal error does not significantly corrupt the spatial accuracy.

The purpose of this paper is to present a good spatial discretization method with diverse number of points, which introduce more accuracy when applied method of lines to solve PDE's as illustrated in section 4.This paper is structured in the following way, in section 2 new derivation of analytical form for approximation the spatial derivative was presented. This allows the main contribution of the paper to be given in section 3 where this approximation was used in solving PDE's by the method of lines. Finally, in section 4 discussion of the numerical experiments is presented.

## DERIVATION OF ANALYTICAL APPROXIMATIONS FOR FUNCTIONS

We turn now to the production of analytical approximations for functions defined explicitly, that is, in closed form. Such functions may include polynomials, infinite (Taylor's) series in powers of $x$, rational functions, and so on. We consider the function $f(x)$ defined in $0 \mathrm{~s} \times \mathrm{S} 1$ ,the analytical series is given by

$$
\begin{equation*}
f(x)=\sum_{i=0} a_{i}(x) y_{i} \tag{1}
\end{equation*}
$$

In numerical practice we cannot use the infinite series, and we rely on a finite approximation of suitable accuracy.

This is obtained most obviously by truncating the series (1) at a suitable point, giving the polynomial

$$
\begin{equation*}
f(x)=\sum_{i=0}^{n} a_{i}(x) y_{i} \tag{2}
\end{equation*}
$$

where $0 \leq x \leq m h, m=2,4,6, \ldots \ldots \ldots$ and we consider $y(x) \in C^{n}$
If we approximate $y(x)$ by constant, linear function, second order polynomial, and so on, to the $m$ order polynomial, this leads to $m+I$ equations in $m+1$ unknowns.
We can solve the resulting system analytically to obtain $a_{i}$ as terms of $x$ variable, and this present-an approximate to the function $\mathrm{f}(\mathrm{x})$. If we want to approximate the first derivative of $f(x)$ we differentiate the result, and similarly to the higher derivative of $f(x)$. The resulting of our computing presents in the following tables:
i-By using three points:

$$
\begin{aligned}
y(x)=\sum_{i=0}^{2} a_{i}(x) y_{i}, 0 \leq x & \leq 2 h, y(x) \in c^{2}, \text { let } z=\frac{x}{h}, \text { then } \\
a_{0} & =1-\frac{3}{2} z+\frac{1}{2} z^{2} \\
a_{1} & =2 z-z^{2} \\
a_{2} & =\frac{-1}{2} z+\frac{1}{2} z^{2}
\end{aligned}
$$

## SHARAF \& BAKODAH .

thus, the approximate for the first derivative:

| $a_{0}^{\prime}$ | $a_{i}^{\prime}$ | $a_{2}^{\prime}$ |
| :--- | :--- | :--- |
| -3 | 4 | -1 |
| -1 | 0 | 1 |
| 1 | -4 | 3 |

where $a^{\prime} i \quad, i=0,1,2$ factored by $\frac{1}{2 i h^{i}}$. For the second derivative

| $a_{0}{ }_{0}$ | $a^{\prime \prime} 1$ | $a_{2}$ |
| :--- | :--- | :--- |
| -3 | 4 | -1 |

where $a^{\prime \prime} i, I=0,1 ; 2$ factored by $\frac{1}{2 i h^{i}}$
ii-By using five points:

$$
\begin{aligned}
& y(x)=\sum_{i=0}^{4} a_{i}(x) y_{i}, 0 \leq x \leq 4 h, y(x) \in c^{4} \quad \text { then } \\
& a_{0}=1-\frac{25}{12} z+\frac{35}{24} z^{2}-\frac{5}{12} z^{3}+\frac{1}{6} z^{4} \\
& a_{1}=4 z-\frac{13}{3} z^{2}+\frac{3}{2} z^{3}-\frac{1}{6} z^{4} \\
& a_{2}=-3 z+\frac{19}{4} z^{2}-2 z^{3}+\frac{1}{4} z^{4} \\
& a_{3}=\frac{4}{3} z+\frac{7}{3} z^{2}+\frac{7}{6} z^{3}-\frac{1}{6} z^{4} \\
& a_{4}=\frac{-1}{4} z+\frac{11}{24} z^{2}-\frac{1}{4} z^{3}+\frac{1}{24} z^{4}
\end{aligned}
$$

## a GOOD SPATIAL DISCRETISATION IN

Thus we can compute the first, second, third, and fourth derivative as follows :
the approximate for the first derivative

| $a_{0}^{\prime}$ | $a_{1}^{\prime}$ | $a_{2}^{\prime}$ | $a_{3}^{\prime}$ | $a_{4}^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| -25 | 48 | -36 | 16 | -3 |
| -3 | -10 | 18 | -6 | 1 |
| 1 | -8 | 0 | 8 | -1 |
| -1 | 6 | -18 | 10 | 3 |
| 3 | -16 | 36 | -48 | 25 |

The approximate for the second derivative

| $a_{0}^{\prime \prime}$ | $a_{1}^{\prime \prime}$ | $a_{2}^{\prime \prime}$ | $a_{3}^{\prime \prime}$ | $a_{4}^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| 35 | -104 | 114 | -56 | 11 |
| 11 | -20 | 6 | 4 | -1 |
| -1 | 16 | -30 | 16 | -1 |
| -1 | 4 | 6 | -20 | 11 |
| 11 | -56 | 114 | -104 | 35 |

The approximate for the third derivative

| $a^{\prime \prime \prime}{ }_{0}$ | $a_{1}{ }_{1}$ | $a_{1 "{ }_{2}}$ | $a^{\prime{ }^{\prime}{ }_{3}}$ | $a^{\prime \prime \prime}{ }_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| -5 | 18 | -24 | 14 | -3 |
| -3 | 10 | -12 | 6 | -1 |
| -1 | 2 | 0 | -2 | 1 |
| 1 | -6 | 12 | -10 | 3 |
| 3 | -14 | 24 | 18 | 5 |

The approximate for the fourth derivative

| $a^{\text {"'" }}$ | $a^{\prime \prime \prime}{ }_{1}$ | $a^{\prime \prime \prime}{ }_{2}$ | $a^{\text {".' }}{ }_{3}$ | $a^{\prime \prime \prime}{ }_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -4 | 6 | -4 | 1 |

## SHARAF \& BAKODAH .

iii.- By using seven points :

$$
\begin{aligned}
& a_{0}=1-\frac{49}{20} z+\frac{812}{360} z^{2}-\frac{49}{48} z^{3}+\frac{35}{144} z^{4}-\frac{7}{240} z^{5}+\frac{1}{720} z^{6} \\
& a_{1}=6 z-\frac{87}{10} z^{2}+\frac{29}{6} z^{3}-\frac{31}{24} z^{4}-\frac{1}{6} z^{5}-\frac{1}{120} z^{6} \\
& a_{2}=-\frac{15}{3} z-\frac{117}{8} z^{2}+\frac{461}{48} z^{3}-\frac{137}{48} z^{4}-\frac{19}{48} z^{5}-\frac{1}{48} z^{6} \\
& a_{3}=\frac{20}{3} z-\frac{127}{9} z^{2}+\frac{31}{3} z^{3}+\frac{121}{36} z^{4}-\frac{1}{2} z^{5}-\frac{1}{36} z^{6} \\
& a_{4}=-\frac{15}{4} z+\frac{33}{4} z^{2}-\frac{307}{48} z^{3}+\frac{107}{48} z^{4}-\frac{17}{48} z^{5}+\frac{1}{48} z^{6} \\
& a_{5}=\frac{6}{5} z-\frac{27}{10} z^{2}+\frac{13}{6} z^{3}-\frac{19}{24} z^{4}+\frac{2}{15} z^{5}-\frac{1}{120} z^{6} \\
& a_{6}=-\frac{1}{6} z+\frac{137}{360} z^{2}-\frac{5}{16} z^{3}+\frac{17}{144} z^{4}-\frac{1}{48} z^{5}+\frac{1}{720} z^{6}
\end{aligned}
$$

And from this system we can compute an approximate to the first, second, third,
fourth, $5^{\text {th }}$ and $6^{\text {th }}$ derivatives as follow

| $a_{0}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -1764 | 4320 | -5400 | 4800 | -2700 | 864 | -120 |
| -120 | -924 | 1800 | -1200 | 600 | -180 | 24 |
| 24 | -288 | -420 | 960 | -360 | 96 | -12 |
| -12 | 108 | -540 | 0 | 540 | -108 | 12 |
| 12 | -96 | 360 | -960 | 420 | 288 | -24 |
| -24 | 180 | -600 | 1200 | -1800 | 924 | 120 |
| 120 | -864 | 2700 | -4800 | 5400 | -4320 | 1764 |

## A GOOD SPATIAL DISCRETISATION IN


The approximate for the second derivative


The approximate for third derivative


The approximate for the fourth derivative


## SHARAF \& BAKODAH .

The approximate for the $5^{\text {th }}$ derivative

| $a_{0}^{(5)}$ | $a_{1}^{(5)}$ | $a_{2}^{(5)}$ | $a_{3}^{(5)}$ | $a_{4}^{(5)}$ | $a_{5}^{(5)}$ | $a_{0}^{(5)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -2520 | 14400 | -34200 | 43200 | -30600 | 11520 | -1800 |
| -1800 | 10080 | -23400 | 28800 | -19800 | 7200 | -1080 |
| -1080 | 5760 | -12600 | 14400 | -9000 | 2880 | -360 |
| -360 | 1440 | -1800 | 0 | 1800 | -1440 | 360 |
| 360 | -2880 | 9000 | -14400 | 12600 | -5760 | 1080 |
| 1080 | -7200 | 19800 | -28800 | 23400 | -10080 | 1800 |
| 1800 | -11520 | 30600 | -43200 | 34200 | -14400 | 2520 |

The approximate for the derivative

| $a_{0}^{(6)}$ | $a_{1}^{(6)}$ | $a_{2}^{(6)}$ | $a_{3}^{(6)}$ | $a_{4}^{(6)}$ | $a_{5}^{(6)}$ | $a_{0}^{(6)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 720 | -4320 | 10800 | 14400 | 10800 | -4320 | 720 |

Where $a_{i}, a_{i}^{\prime \prime}, a_{i}^{\prime "}, a_{i}^{\prime \cdots "}, a_{i}^{(5)}, a_{i}^{(6)}, \mathrm{i}=1,2,3,4,5,6$ factored by $\frac{1}{6 i / i}$

## iv-By using eleven points:

We cannot use the 11-point formulas naturally in all numerical MOL applications. If we could be assured that the spatial variation of the POE will always be a polynomial, this would be logical But in general, this will not be the case .Also all of the preceding approximations for the derivative are based on polynomials. However, polynomials of increasing order have derivatives with an increasing number of roots.

For example ,the fourth-order polynomial, which is the basis of table (1), differentiates once to a third order polynomial that has three
roots; at each of these three roots, the polynomial will therefore have a maximum or a minimum, suggesting that it can oscillate between three maximum and minimum values. Similarly , a tenth- order polynomial will have nine maxima and minima, and it will in general oscillate between these nine values. in other words, as the order of the approximating polynomial increases, the possibility of unrealistic oscillation in the numerical method of lines solution of PDE also increases, and this is frequently observed. Schiesser [4] concluded that the fourth-order formulas of table (1) are good compromise between accuracy, and the minimization of oscillation. Other approximations can be used that might be better behaved (not have the oscillation of polynomials) .

In fact, essentially any approximation can be considered for the PDE spatial derivatives, and some approximations will generally be found to be better than others. Thus, the numerical method of lines is really open-ended, and can be implemented in many ways. Commonly used approximations for PDE spatial derivatives include splines, finite elements, and weighted residual methods. We could obviously devote much more discussion to the development of spatial derivatives approximations, but in order to keep the discussion to reasonable length, we shall consider a few other selected polynomial approximations that have been useful in the solution of a range of PDE problems.

## Method of Lines Approximations

To illustrate MOL approximations, we consider the problem discussed by Hicks and Wei[2]:


fewith ppproximaterreduction of yreandsfo dimensionless vantiones; eq. of (h) describes, diffusion orm heaticonduction inseaslabry With proper ondefinition of yor (1) also, describes the sameaphemena in at phere, if the effects are radiad only Without loss of generalitye theng discussion is limited to eg. (I) in the region $1 \leq x \leq 1$. Boundary conditionsareviae





## It is convenient to restate the problem as follows:






 $u(1, t)=0$
, $\mathbf{t}>\mathbf{0}$. 4rom nomer
(2)
$\mathrm{u}(\mathrm{x}, 0)=\frac{(b-a)}{2} \times-\frac{(a+b)}{2} \quad,-1<\mathrm{x}<1$
inmonke mex 2 , $2 \ldots$,
by discretizing (1)' with respect to $x$, the following system of ordinary differential


(3)
where we often consider $\sum a_{j i} u_{i}$ as a finite difference approximation to $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$
In dealing with, for example," 5" point central difference approximations to the second
partial derivative, Fisher[1] proposed that, at the end points, where $u_{N}, \frac{d u_{N}}{d t}, \frac{d^{2} u_{N}}{d t^{2}}$
all equal zero. This assumption leads to the requirement that $\mathcal{U}_{N+1}=-\mathcal{U}_{N-1}$ and $\mathcal{U}_{(N+1)}=\mathcal{U}_{-(N-1)}$. All equally spaced central difference approximations to the second derivative are symmetric in the values of the coefficients of the $\mathcal{U}_{j}$ about the central point.
In [2] Hicks and Wei mentioned that; the use of a central difference approximation of order greater than " 3 " point requires explicit specification of dependent variable values outside of the interval of interest $(-1,1)$, and they consider the use of non central difference approximations. The well known second order finite difference

Approximation for the first derivative $\frac{d u\left(x_{i}\right)}{d x}$ is given by the equation

$$
\begin{equation*}
\frac{d u\left(x_{i}\right)}{d x}=\frac{u\left(x_{i+1}\right)-u\left(x_{i-1}\right)}{2 \Delta x+O\left(\Delta x^{2}\right)} \tag{4}
\end{equation*}
$$

and this equation can be applied over spatial grid at points $i=2,3,4, \ldots$, N-1

However, a problem occurs at the end points $i=1$ and $i=N$, equation(3) requires $u\left(x_{N+1}\right)$ which is also non existent. Schiesser [4] developed an

## SHARAF \& BAKODAH .

approximation for $\frac{d u\left(x_{i}\right)}{d x}$ that requires the use of the points $u\left(x_{1}\right)$, $u\left(x_{2}\right)$ and $u\left(x_{3}\right)$

Similarly, he developed an approximation $\frac{d u\left(x_{N}\right)}{d x}$ He gave " 3 " points formula and" 5 " points formula, indicate to "9" points formula and" $11 "$ points formula for first and second derivatives. Here we complete his work in "7" points formula and introduce the derivative up to $m$ order.

As known any stable, convergent numerical algorithm applied to solve the system of ordinary differential equations by MOL will then also produce a stable, convergent numerical solutions of the equations, and consequently produce a stable, convergent numerical solutions of the associated partial differential equation.
Whither or not the use of higher order approximations will improve convergence depends on the improve of the higher eigenvalues. As the number of points " n " used to approximate $\frac{\partial^{2} u}{\partial x^{2}}$ is increased (keeping $N$, the measure of number of divisions of the $x$ interval, constant ), the eigenvalues of the approximating system of ordinary differential equation must be all real and negative. Equations (3) for a " 3 " point centeral difference are in matrix form

$$
\frac{1}{h^{2}}\left[\begin{array}{lllllll}
-2 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & -2 & 1 & 0 & \ldots & 0 & 0 \\
0 & 1 & -2 & 0 & \cdots & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & 1 \\
0 & \cdot & \cdot & \cdot & \cdots & 1 & -2
\end{array}\right]\left[\begin{array}{l}
u_{N-1} \\
\cdot \\
\cdot \\
\cdot \\
u_{-(N-1)}
\end{array}\right]=\left[\begin{array}{l}
\frac{d u_{N-1}}{d t} . \\
\cdot \\
\cdot \\
\cdot \\
\frac{d u_{-(N-1)}}{d t}
\end{array}\right]
$$

Or

$$
\frac{1}{h^{2}} A_{3} u=\frac{d}{d t} u
$$

where $h=\frac{1}{N} \quad$ then:

$$
u=\sum_{k=1}^{2 N-1} c_{k} E_{k} \exp \left(\frac{\lambda_{k} t}{h^{2}}\right)
$$

where $\lambda_{k}$ are the eigenvalues of $\mathrm{A}_{3}, E_{k}$ are eigenvectors of $\mathrm{A}_{3}$ and $C_{k}$ are the Fourier coefficients of (2)'
The eigenvalues of $A_{3}$ are given by :

$$
\lambda_{k}=-2+2 \cos \frac{k \pi}{2 N} \quad, k=1,2, \ldots, 2 N-1
$$

Now, as in [2] , we can show, by direct calculation (for $11=5,7,9,11$ ), that the recursion formula:

$$
\begin{equation*}
A_{n}=(-1)^{\frac{(n+1)}{2}}\left[\left(\frac{n-3}{2}\right)!\right]^{2} A_{3}^{\frac{n-1}{2}}+(n-1)(n-2) A_{n-2} \tag{5}
\end{equation*}
$$

hold.
The significance of (5) is that each of the matrices, $\boldsymbol{A}_{n}$, is a polynomial in $A_{3}$, and therefore ,commutes with $A_{3}$, which implies that $\mathbf{A}_{\mathbf{n}}$ has the same eigenvectors as $A_{3}$ Now the eigenvalues of $A_{3}$ are all real and negative. Formula (5) can also be used to compute the eigenvalues of $A_{n}$ , which are always real and negative, and which approach the eigenvalues of (1) with increasing $N$, as shown by Fisher [1] .

Hence, the formulas which introduced ,in section (2) give stable, convergent numerical solution of equation (1)' basis on the recursion formula (5) .

## SHARAF \& BAKODAH .

## 4. Computer Experimentation:

Simple example of the use of this method is given in schiesser [4], the testing that was carried out developing the method had been shown in tables with ( $3,5,7$ ) points formulas on parabolic problems. Similarly we can apply the same method on elliptic problems. Detailed results of tests on the hyperbolic problems are given in [3]

Problem(l): Consider the special case of Heat conduction equations:

$$
\begin{array}{r}
\mathbf{u}_{\mathbf{t}}=\mathbf{u}_{\mathbf{x x}}  \tag{1}\\
\\
u(x, 0)=\sin \left(\frac{\pi x}{L}\right) \\
\mathbf{u ( 0 , t})=\mathbf{u}(\mathbf{1}, \mathbf{t})=\mathbf{0}
\end{array}
$$

(2)
where exact solution for this problem is

$$
u(x, t)=e^{-\left(\pi^{2} / L^{2}\right) t} \sin (\pi x / L)
$$

For $L=1,0 \leq t \leq 0.5,0 \leq x \leq 1, N=51, h=\frac{1}{50}$, the output from Matlab programs is in table ( $\mathbf{I}$ )

| $t$ | $x$ | MOL3 | MOL5 | MOL7 | Exact |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.1 | 0.1 | 0.1152 | 0.1840 | 0.2238 | 0.1152 |
|  | 0.2 | 0.2191 | 0.2699 | 0.3030 | 0.2191 |
|  | 0.3 | 0.3017 | 0.3395 | 0.3624 | 0.3015 |
| 0.4 | 0.3545 | 0.3848 | 0.4042 | 0.3015 |  |
|  | 0.5 | 0.3729 | 0.4006 | 0.4177 | 0.3727 |

Table(I) : MOL solution of equations (1),(2) using (3,5,7) points for spatial approximation

Problem(2):

$$
\begin{array}{lll} 
& \begin{array}{l}
\mathbf{u}_{\mathbf{t}}=\mathbf{u}_{\mathbf{x x}} \\
\mathbf{u}(\mathbf{x}, \mathbf{0})=\mathbf{1}
\end{array} & , 0 \leq x \leq 1 \\
\frac{\partial u}{\partial x}=u & & \text { at } \\
\frac{\partial u}{\partial x}=-u & & \text { at }
\end{array}
$$

with $N=51$ and $0 \leq t \leq 0.01$, we listed the results in table II
For $\mathbf{L}=1,0 \leq t \leq 0.5 \quad, \quad 0 \leq x \leq 1 \quad, N=51 \quad, h=\frac{1}{50}$,
the out put from Matlab programs is in table (II)

| $t$ | x | MOL3 | MOL5 | MOL7 | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0025 | 0.1 | 0.8289 | 1.0000 | 1.0003 | 0.9951 |
|  | 0.2 | 0.9945 | 1.0004 | 1.0001 | 0.9999 |
|  | 0.3 | 1.0000 | 1.0002 | 0.9999 | 1.0000 |
|  | 0.4 | 1.0000 | 1.0000 | 1.0001 | 1.0000 |
|  | 0.5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

Table(II)

## CONCLUSIONS:

From the example problems, it appears that the spatial approximation will give best result to any problem which can be solved using method of line if we used the 3point formula. These results indicate that the increasing of the points of the formula, cannot bring the MOL and exact solutions into closer agreement. Although this is logically theoretically. The previous results conformed on parabolic problems, but not necessary conformed on Hyperbolic or elliptic problems, where the

Hyperbolic problems were sensitive by the increasing of the points of formula. However, the previous tables in section 2

## SHARAF \& BAKODAII .

are too useful. tool for many kind of problems which based on approximate function or derivatives.

## REFERENCES

Fisher,M.E.," Higher Order Difference in Analogue Solution of Partial Differential

Equations",J.Acms,3(1956),325-347.
Hicks,J. S. and J. Wei," Numerical Solution of Parabolic Partial Differential Equations with two-point Boundary Conditions by use Method of Lines ",J.Acm, Vol.I4,No.3(1967),549-562.
Saucez,P. ,Schesser,W.E., and Wouwer,A.V.,"Upwinding in the Method of Lines", Mathematics and Computers in Simulation, 56(2001), 171-185.
Schesser, W. E.," The Numerical Methods of Lines -Integration of Partial Differential Equations", Acadimic Press, San Diego, (1991).

## الملخص العربي

في هذا البحث ، قـدمنا حل الممعادلات التفاضلية الجزئية بطريقة الخطوط باعتبـار عدة اختيار ات مناسبـة لنقاض التجزينـة وقد قمنا بتطبيق
 (لـحل

