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ABSTRACT:

A new analytical technique for drawing isovel patterns in any open channel cross section is presented
based on the Harmonic Mean Distance concept. It is assumed that the instantaneous velocity at a point in
the section is affected by the roughness of each point in the boundary and its distance from it. A computer
program is established to compute the Harmonic Mean Distance at all points for open channel of different
cross sections, taking into consideration the effect of the free surface and the composite roughness. Based
on the Harmonic Mean Distance the 2-D velocity distribution is predicted using the power law
distribution and the logarithmic distribution. Also the velocity factors (o and f), the location of the
maximum velocity, and the ratio of the maximum to the mean velocity (ume / ¥) are calculated. The
proposed model is verified with measured velocity profiles from a previous work of other researchers on

rectangular cross sections and showed good agreement.

1-INTRODUCTION

Predicting the velocity distribution solves
various problems in open channel hydraulics. The
most important of which is estimating precisely
the discharge which is the most significant task in
water resources management. Close to this the
estimation of the energy and the momentum
correction coefficients, aad the estimation of the
sheer stress distribution which is the main factor
affects the distribution of sediment concentration.
The isovel patterns in an open channel cross
section are affected by several uncertain factors,
among these the boundary roughness, the cross
section geometry, the channel alignment, the
presence of bends, the properties of the flowing
water, the type of flow, the flow regimes, and the
obvious effect of the free surface.

Several studies have been carried out to
investigate the velocity profile for many years.
Some jnvestigators have solved equations
combined with turbulent models (Sofialidis and
Prinos 1998; Bonakdari, et al 2008). Chiu(1987-
1989) proposed a new approach to the problem
based on a probability concept which later was

followed by related studies, Chiu and Hsu (2006).
Maghrebi and Ball (2006) presented a new
technique using the similarities between the
magnetic field and the isovel contours. Most of the
models worked in these studies did not deal with
the effect of the free surface as a variable. While in
this study the effect of the free surface provides a
degree of freedom that can be later calibrated
experimentally.

Ir this study a new technique is presented to
simulate the isovels based on the Harmonic Mean
Distance (HMD). This new term is first defined by
Fukushi (2006). In a hydraulic cross section the
HMD has a small value near the boundary and
increases as gefting far of it. The HMD
distribution simuiates the velocity distribution in
an obvious way.

2-THE HARMONIC MEAN DISTANCE

In an arbitrary hydraulic cross section, Fukushi
(2006) defined the Harmonic Mean Distance of a
point inside the section as: The harmonic mean of
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the distances between the point and the boundary,
Fig. 1.

The Harmonic Mean Distance can be calculated
from the equation (after Fukushi, 2006).

N _ i | ()
HMD(x,y) ey L,(x, y)
and for N= ce

21
= a8 2
HMDT.:, y) ! L(x, y) @)

in which ¥ is the number of rays emitted from
point (x, 3) and L; is the distance between point (x
, ¥) and the boundary on the ray designated by
index .

Fukushi (2006) introduced the free surface as a
kind of weak wall with smaljer roughness, Fig. 2,
For the rays that intersect with the free surface, the
distances Z; are muitiplied with a factor F; in order
to weaken their weights. Eq. (1) becomes

N =)Nj 1 +§ 1 )
HMDix,y) por L,ix,y) J_|L),ix,y)FJ

where L, is the distance between point (x , ¥} and
the free surface on the ray designated by index ;.
N; and ¥, are the number of rays in the region
(A() and (A;z) respectively. F; is the free surface
weight factor. When F; is equat to 1 the free
surface is equal to the rest of the boundary in
roughness. When F; is larger than 1 the free
surface is less than the rest of the boundary in
roughness, and the larger F, the weaker the free
surface. When F; has a large value or tends to
infinity the effect of the free surface is neglected.
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Although the free surface is much less in
roughness than the rest of the boundary, its
roughness is considered a degree of freedom in the
proposed model.

Mean Distance concept

for ¥ = o Eq. (3) becomes

in [or—de+ |

1
= a9 (4
HMD(x,y) ,Llxy) JLxy)F, @

Other new concept is the Harmonic Hydraulic
Radius (HHR) given by (Fukushi 2006) as a new
definition of the usual hydraulic radius. The HHR
is the arithmetic mean of the HMDs.

M
Y HMD, _
HHR =4 — (5)
M

The Hydraulic cross section is meshed and M is
the number of points in the section. Fukushi
{(2006) concentrated his study on this term. He
used the Harmonic Hydraulic Radius instead of the
usually known Hydraulic Radius in the standard
Manning equation,

V= -:;HHR‘“”S“”" (6)

where ¥ is the average velocity, n is the Manning
cocfficient, and S is the slope. The hydraulic radius
(R = A/ P) can be determined in a model by
multiplying the prototype radius by the model
length ratio L, , and so is the Harmonic Hydraulic
Radius. Both are dependent on the similarity ratio.
Other important term is the ratio between the HHR
and the hydraulic radius, C.



Mansoura Engineering Journal, (MEJ), Vol. 35, No. 2, June 2010.

R
Vhuas - 7

In circular section at full flow R = 0.5 unit
length, HHR = 0.557 unit length analytically
calculated, and C, = 0.89. Fukushi(2006) applied
Eq. (6) on sewer pipes and deduced new
Hydraulic Elements charts for partially full pipe
flow which had agreed with several recorded data
on sewer pipes.

3-DEVELOPING THE HARMONIC MEAN
DISTANCE EQUATION

In this paper the HMD equation is modified in
order to introduce the composite roughness. The
roughness of each individual segment in the
boundary is indicated by a coefficient (s, that is
inversely proportional to the surface roughness,
Fig. 3. This means that the small value of s
indicates a rougher segment of the boundary. s;
for the free surface is F,. The HMD equation
becomes:

N k| =, 1
— e @)
HMD(x,y) @) = L(x, y)s,),
when N = o Eq. (8) becomes

2x sy 1
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Fig. 3. Introducing the composite roughness to the
HMD concept

Sy is the smoothness factor, & is the number of
segments in the boundary including the free
surface, and N, is the number of rays that directly
intersect with segment designated by index j.
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The Harmonic Mean Distance has small values
near the boundary increasing as getting far from it.
The distribution of the HMD is non linear and the
point of Maximum HMD is closer to the segments
that has less roughness. Which means that the
HMD  distribution  simulates the velocity
distribution in a way that evaluates all distances
from a point to the boundary. If a point lies very
close to the boundary its HMD tends to zero. For a
point on the boundary the HMD can not be
calculated because L; must not be zero, and so the
HMD can be calculated for all points inside the
section. Figs. 4, and 5 are an illustrative example
that shows the distribution of HMD in a
trapezoidal cross section with a free surface weight
factor, F, = 3.

g. 4. The HMD distribution over a trapezoidal cross
section

002040808 1 12141818 2
HMD ! HHR

Fig. 5. The vertical HMD distribution at the center
(cross section in Fig. 4), where Y is the total depth, and
v is the distance from bed.

The advantage of the harmonic mean is that it
gives larger weights to the shortest distances, this
agrees with the fact that the closer wall has great
effect on the velocity at a point than the further
one. This effect can be controlled by raising the
denominators of both sides of Eq. (8) to a power
Ch
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which makes Eq. (8) becomes:

N ""[% L

RN S 10)
(HMD(x, ) Ellj(x,y)(sf),r"] (

in which Cris the contour factor, the contour lines
of the HMD can be controlled depending on the
value of Cy. If Cyis larger than 1, the weight of the
short distances gets larger, the contour lines
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become more parallel to the walls, and the
maximum HMD occurs closer to the weak walls.
On the other hand if Cyis smaller than 1, the short
distances lose some of their weights, and the
maximum HMD occurs closer to the center of the
section. Cyis another degree of freedom. Figures 6,
and 7 show the HMD distribution over a square
section with the variation of Cr. F is taken equal
to 6.0.

Fig. 6. The HMD distribution over & square cross section: (a) C=<0.1; (b) C=1.0; (c) C=10

yiY

Fig. 7. The vertical HMD distribution at the center
line (cross section io Fig. 6.)

4-VELOCITY DISTRIBUTION

The turbulent velocity distribution in a pipe
cross section or in an open channel cross section is
given by one of two equations, the Power law
distribution, Eq. (11), and the Universal Prandti
Yon-Karman Loganthmic distribution, Eq. (12).

(11

i
U= u.CI[%Jﬂ

u=uC, log[f—}

L3

(12)

in which, u is the instantaneous velocity; C; and
C; are constants; £ is the valid length from the
point to the boundary; I, is the constant of
integration in the logarithmic law; X is the
physical roughness mean height; u« is the sheer
velocity u, =+fr,/p, where 7,is the average
boundary sheer stress and pis the mass density;
and m; is the denominator of exponent of the
power law distribution.

In the power law distribution, Eq. (11), the value
of the exponent denominator m; depends on the
degree of turbulence, it varies between 4 and 12,
my; = 7 is in agreement with large number of
experimental measurements of turbulent velocity
profiles (Chen 1991). m;, = 2 gives a parabolic
laminar distribution.
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In the logarithmic distribution Eq. (12), when
the surface is rough, the constant L, depend on the
roughness height X,

L, =m2K (13)

the value of the constant m; is estimated by 1/30
driven from Nikuradse's experimental data on
rough pipes. sand grains were cemented to the
inner walls of pipes to fabricate an artificial
roughness. The Logarithmic distribution for rough
surfaces becomes, (after Chow, 1959):

u=uC, log{—%J
m,

The roughness height in Eq, (14) is the mean
diameter of the sand grains used by Nikuradse and
is Known as the Nikuradse sand roughness. When
the surface is smooth, L, depends on the laminar-
sub layer.

(14)

(13)

where v is the kinematic viscosity, the constant,
mj, is estimated by 1/9 also by Nikuradse. The

logarithmic  distribution for smooth surfaces

becomes:

w=uC, log(i:-‘ﬁ-} (16)
myu

From Egs. (13) and (15) the value of the
roughness height for smooth surfaces can be
replaced leaning on Nikuradse's results,

g%
%,

(7
this replacement is useful while introducing data
to the model, and this in order to use Eqs. {11) and
(14) in both rough and smooth cases.

The proposed model uses Eq. (10} to calculate
the HMD taking into consideration the roughness
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of the boundary and the effect of the free surface
in calculating the Harmonic Mean Distance. Also
Eq. (10) includes a new calibrating parameter, Cg
which added flexibility to it. In this paper a
theoretical relation between the HMD and the
velocity is introduced. Consider a constant length
X that makes:

HMD(x,y) L
= 18
X s (18)
L is the valid length from the point (x, ) o the
boundary; and K is the valid roughness.

HMIXx, y) = HarmonicMean(L,.s ) )= —I_’I_({ (19)

L, is the distance between the point (x, y) and the
boundary on the ray designated by index 7 ; and sy;
is the smoothoess factor of the intersecting
segment on the boundary with the ray designated
by i. The smoothness factar, sy, is assumed to be
inversely proportional to the local roughness, K.
Consider a length X~ as a constant of variation.

S5, = X (20)
the HMD equation becomes
L.X
HMD(x, y) = HM [_}i’_—) 2n
A" can be taken as & common factor
. L,
HMD(x,y)= X' .HM E_ (22)

substituting Egs. (19) and (22) in the velocity
distribution Eqs. (11) and (14) lead to Eqgs. (23)
and (24).
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u=uC, ¥ (23)
X‘.HM(%)
u=u,C,lo ' (24)
m, X

The values of X and X are unknowns and are to
be eliminated. In Eq. (23) m, is replaced by m;’
because the HMD distribution is non-linear and C;
is replaced by C," eliminating (X" / X) ", Eq.
(25). In Eq. (24) m, is replaced by m; " to eliminate
(X" /X), Eq. (26).

L "
u = u.CI{HM(E)] (25)
M)
u=uC,lo e (26)
m,

Although m;" and m;" are expected to be near the
range of previous works they provides one degree
of freedom that should be calibrated. The Power
law distribution represented in Eq. (25) is more
sensitive in analysis than the Logarithmic
distribution represented in Eq. (26). The reason is
that the value of m;" affects the curvature of the
power law distribution more than the effect of m;"
on the curvature of the Logarithmic distribution,
i.e. the Logarithmic distribution is more stiff
somehow. Eq. (26) might need a mathematical
modification, but this will not take place presently
in this study. Figures 8 and 9 show the effect of
changing the value of m, " and m;" on the velocity
distribution for a rectangular cross section with
constant conditions.
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Fig. 8. The effect of changing m,” on the vertical
power-law velocity distribution at the centerline of a
rectangular cross section.
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Fig. 9. The effect of changing m," on the vertical
logarithmic velocity distribution at the centerline of a
rectangular cross section.

The velocity profile is normalized by dividing
the velocity of all points by the average velocity V.
the sheer velocity, us, the constants, C;, and C;
are then not important because the normalized
velocity profile will remain unchanged. Some
researchers have behaved this way (Maghrebi and
Ball 2006; Sofialidis and Prinos 1998). Eqs (25)
and (26) are used in the model to predict the
velocity distribution after normalization. The
HMD also should be normalized especially when
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introducing the smoothness factor, s; using the
surface roughness, K, as in Eq. (20), because the
value of X~ is unknown. The point of maximum
HMD is that of the maximum velocity. Figures 10,
11, and 12 are examples that show the distribution
of the HMD, and the distribution of velocity using
Eqs. (25) and (26). X, is the free surface
roughness, and is infroduced in the following
example by 0.00005 m equals to 1/20 of the
surface roughness of the rest of the boundary.

Fg. 10. The AMD distribution over a triangular cross
section.

Fig. 11. The velocity distribution over the triangular
cross section in Fig. 10. based on the power law in Eq.
(25).

: |
Fig. 12. The velocity distribution over the triangular
cross section in Fig. 10. based on the logarithmic law
in Eq. (26).
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5-MODEL VERIFICATION AND RESULTS

The experimentally measured data of the
velocity profiles chosen to verify the model is
taken from Maghrebi and Ball (2006). The flume
cross section was rectangular of 0.25m wide, and
0.29m high with smooth boundary. The
experiments were carried out for three flow depths
of 0.15m, 0.2m, 0.25m, corresponding to B/Y of
1.67, 1.235, 1.0, respectively. Where B is the width
of the section, and ¥ is the total depth. The
velocity profiles were measured at the center line
vertically using a miniature propeller with a
diameter of lcm. The surface roughness, X, is
introduced reasonably by 0.001m, noted that Eq.
(17) requires the energy slope which is not
mentioned in the given data. The proposed modei
has three degrees of freedom that are still not
calibrated:

1- The free surface roughness, K,, is

introduced by 1/20 of X.
2- The contour factor, Cj, is introduced by 1.0
3- m;" is introduced by 6.0, and m;" is
introduced by 0.1
A comparison between the measured velocity

profiles and the computed velocity profiles using
the proposed model is shown in Fig. 13. The
reduction of the velocity near the water surface
that appears in the profile computed by the
proposed model can be controlled by adjusting the
value of X,. The maximum velocity computed by
the model! is below the free surface even when the
channel is wide. Seckin (2005) showed that zim.y
occurred below the water surface for all his test
cases. The proposed model gives a very good
simulation of the velocity near the boundary. The
flume used by Maghrebi and Ball (2006) was 8.0m
long and the location of the tested section is 5.5m
from the upstream entrance. The development of
the velocity profile is not checked out, and that
might explain why the maximum measured
velocity in the first two cases occurs in the lower
half of the depth. However, the measured velocity
profiles are accepted in more than one paper.
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Fig. 13. Comparison of measured velocity profiles along center line of flume flow with profile of proposed model:
(a) B/Y = 1.0; (b) B/Y =1.25; (¢) B/Y = 1.67
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Fig. 14. Percentage of error in velocity profile along center line of flume flow: (a) B/Y = 1.0; (b) B/Y = 125; (¢) B/Y
= 1.67, [error = (calculated — measured) / measured]

the error in the model proposed by Maghrebi

The percentage of error between the computed  (2006).
and measured velocity profile is calculated, Fig. The isovel contours for the three cases of B/Y are
14. The error in the proposed model is less than  shown in figures 15, 16, and 17. The point of the
maximum velocity is the same for both the power
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and the logarithmic distribution in each case,
because it depends on the maximum HMD. The
isovels shows a near equivalence of the power and
the logarithmic distributions. A onumber of
investigators (Brownlie 1983;Wright and Parker
2004) have shown the similarity between the
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logarithmic velocity distribution and the one-sixth
power distribution. Although the composite
roughness can be easily introduced to the model,
the roughness of all segments of the boundary is
introduced here by the same value.

Fig. 17. Isovel contours by the proposed model for 8/Y = 1.67 : (a) Power distribution; (b) Logarithmic distribution.

6- VELOCITY FACTORS

The velocity factors are not affected by the
normalization. Since the normalized velocity is
calculated for all points produced by meshing the
cross section, the kinematic energy cosrection

factor, &, and the momentum correction factor, 5,
can be calculated by:
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where 4 is the cross section area, and a is the area
of the individual mesh element, The values of
and @ are very significant in the case of the
compound sections. Because of the complexity in
computing the velocity correction factors, they are
assumed equal to unity in most of hydraulic
calculations. In turbulent flow in regular channels
«aand Brarely exceeds 1.15 and 1.05, respectively,
(Henderson 1966).

The ratio of the maximum to the mean velocity
(umax / V) is related to the velocity factors. Fig. 18
shows the variations of &, 8, and (timer / V) for the
proposed model with the ratio 8/Y. The values of
&, B, and (U / V) are lower in the wider section,
this might be due to the reduction in the effect of
sides on the velocity distribution.

124 - =i~ -(Pawer law) m, =6~

A 1

0123 45678 8190
8y

Fig, 18, The variation of a, B, and (ume / V)
calculated by the proposed model with B/Y (Power
law),

7-CONCLUSIONS
A theoretical approach of the relation between
the Harmonic Mean Distance and the velocity is
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presented. Based on the HMD, a new analytical
technique for drawing the dimensionless isovel
contours for any open channel cross section is
proposed. The model takes into consideration the
composite roughness, the section geometry, and
the effect of the free surface. The model is based
on a simple idea but is engaged with three
calibrating parameters:

1- The free surface roughness X,.

2- The contour factor C.

3- the constants m; " and m;".
The model was verified with measured velocity
profiles from a previous work by other researchers
on rectangular cross sections, and showed good
agreement.

The major advantage of the proposed model is
that it can deal with the free surface effect as a
degree of freedom that might be calibrated in a
future work.
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NOMENCLATURE
The following symbols are used in this paper:
A Cross section area;
As Region at which rays intersect
with the wetted perimeter;
4> Region at which rays intersect
with the free surface;
a Area of individual mesh element;

B Open-channel width;

), Constants;

C,r ‘, C;_-

Cy Contour factor;

Ch Ratio between the Harmonic
hydraulic Radius and the hydraulic
radius;

dsg Radian element;

oA Free surface weight factor;

HM Harmonic Mean
HMD Harmonic Mean Distance;
HHR Harmonic Hydraulic Radius;
ijk  Indices,
K Physical roughness mean hight;

Ky Free surface roughness
L Length from the point to the
boundary;

L, Constant of integration in the
logarithmic distribution;

L, Length ratio;

M Number of points in the section
after meshing;

m Denominator in exponent in power
velocity distribution;

¥

"y

m;'

et

3]

oo

C.32

Constant of variation between the
roughness height and the constant
of integration in the logarithmic
velocity distribution;

Denominator in exponent in power
velocity distribution afier applying
the harmonic mean;

Constant in the logarithmic
velocity distribution after applying
the harmonic mean;

Total number of rays emitted from
a point in the cross section;
Number of rays emitted from a
point to the wetted perimeter;
Number of rays emitted from a
point to the free surface;
Manning’s roughness coefficient;
Wetted perimeter;

Hydraulic radius;

Longitudinal channel slope;
Smoothness factor;

Instantaneous streamwise velocity;
Sheer velocity;

Maximum streamwise velocity;
Average streamwise velocity;
Horizontal coordinate
perpendicular to the direction of
flow;

Constants;

Vertical coordinate with zero at
the cross section bed;

Total water depth;

Kinematic energy cormrection
factor;

Momentum correction factor;
Kinematic viscosity;

Water density; and

Average boundary shear stress



