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ABSTRACT

Measuring available water (AW) and saturated
hydraulic conductivity (Ks) within a landscape are
important because there are key attributes controlling water
budget which is important for the agricultural production
and transport processes in the soil. Estimation of these
attributes at an acceptable level of accuracy is important,
especially in the case when they exhibit high variability,
since their measurements are a time- and labor-consuming
procedure. This study was conducted to evaluate and
compare kriging and cokriging to estimate AW and Ks using
clay content data on 2147-ha of sand to sandy clay loam
soils. Kriging techniques rely on the spatial dependence
between observations to predict attribute values at un-
sampled locations. Cokriging on the other hand, utilizes the
spatial correlation between two variables to map the
primary one, which is under-sampled, using information
content of the secondary variable. Collocated cokriging is
used when the primary and the secondary variables are
sampled at the same location. The present study aimed for
applying collocated cokriging to map topsoil AW and Ks
(primary variable) measured in 26 samples, using the
information content of topsoil clay (secondary variable)
measured in 46 samples. Topsoil AW ranged between 33.52
and 127.34 mm m™ with a mean of 71.54 mm m™ and Ks
ranged from 0.11 to 5.17 md™ with a mean of 2.52 md™,
whereas topsoil clay varied from 0.80 to 20.20 % with a
mean of 7.25 %. The correlation coefficients, (r), between
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clay and AW and Ks were 0.94 and -0.93 respectively, and,
therefore, helped estimation of AW and Ks values at
unobserved locations and satisfies the most important
criteria for carrying out cokriging. The fitted semivariogram
for clay and AW were Spherical, were it was Gaussian for
Ks. The cross-semivariogram between clay, AW and Ks
were Exponential. The cokriged spatial distribution of
topsoil AW and Ks were mapped and compared to kriged
AW and Ks. The cokriging results were cross-validated and
the standard error of estimation was lower in cokriging than
in kriging. The study showed the superiority of cokriging
upon kriging as a spatial mapping method, especially if the
primary variable is under-sampled.

Keywords: Geostatistical analysis, Collocated cokriging, Kriging, Clay content,
available water saturated hydraulic conductivity, Cross-semivariogram and
Semivariogram.

INTRODUCTION

Knowledge about the maximum water conducting capacity of
soils is crucial in understanding and modeling several surface and
subsurface processes. The partitioning between infiltration and runoff,
temporary water logging in the root zone, rate of solute transport, and
several other agricultural and environmental processes are dependent
on the soil’s saturated hydraulic conductivity (Ks). Also water budgets
for the agricultural production, transport processes and crop water
requirements are reliant on available water content (AW). However,
obtaining sufficient and reliable Ks and AW data for large-scale
process modeling remains a challenge. Inherent soil heterogeneity and
extrinsic factors cause orders of magnitude variability in spatial
distribution of Ks and AW (Wilson et al., 1989; Bosch and West,
1998; Ersahin, 2003; Sobieraj et al., 2004; Igbal et al., 2005 and
Gupta et al. 2006).

Geostatistical analysis has been widely applied in soil science
for assessing spatial patterns of variation of a number of soil
properties at a range of scales and with different sizes of sampling
grids. Spatial interpolation is a procedure for estimating the value of a
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variable at unsampled locations. The interpolation techniques
commonly used in earth sciences include linear regression, ordinary
kriging and co-kriging (Kollias et al., 1999). The cokriging technique
provides more accurate estimation than the ordinary kriging method, if
the cross—semivariogram function estimation accuracy is expected
when a higher sampling density is used. The cross-correlation between
variables is utilized to improve these estimates, and to reduce the
variance of the estimation error (Isaaks and Srivastava, 1989). Yates
and Warrick (1987) estimated soil water content using a cokriging
procedure in which the bare soil surface temperature and the sand
content were used to supply additional information. Stein et al.
(1988) used cokriging to increase computation precision in moisture
deficit maps. Ersahin (2003) showed that cokriging provided no
advantage over kriging when data were sufficient. With kriging, 45
observed Infiltration Rate (IR) values were sufficient to obtain the
same information as 50 observations. However, using cokriging with
120 bulk density values, 40 observed values of IR were sufficient to
obtain the same information from that obtained with 50 field
measurement of IR. This indicates that cokriging was more successful
than kriging when IR is under-sampled.

The objectives of this study were (i) to describe spatial
variability of AW, Ks and clay, (ii) to assess the spatial relationship
between both AW and Ks and clay, and (iii) to evaluate and compare
the geostatistical procedures (kriging and cokriging) in estimating Aw
and Ks at unobserved sites using limited available data of AW or Ks.

MATERIALS AND METHODS

The Study Site

The study site is located at 95 km northern- west of Farafra
City - Farafra oasis. It comprises part of the newly reclaimed sandy
soils in a new valley. The total acreage of the studied area is about
2147 hectares (map 1).
Sampling Scheme

Forty-six soil observations were collected over the study area.
The observations were analyzed for clay percentage (Gee and Bauder,
1986). These soil observations were used as a secondary data for
interpolating of Available Water (AW) in mm m™ and saturated
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hydraulic conductivity (Ks) in md™. Twenty-six soil observations
were taken randomly as a subset of the original data and analyzed for
AW (Klute, 1986 ) and Ks (Klute and Dirksen 1986), which are
considered as the primary variables. The samples locations were
georeferenced to the UTM coordinate system. The spatial
configuration of the soil observations used for AW and Ks are shown
in map (1).
Descriptive Statistical Analysis

The data for clay, AW and Ks were analyzed for basic
statistics including mean, variance, standard deviation, minimum,
maximum, skewness, and kurtosis. The histogram for both variables
was obtained, and the correlations between the variables were
calculated.

Study

I.%\

|||||||||||||

3 Kilometers

¥ Sampels measured for Clay Only
® Sampels measured for Clay, A.W. and Ks

Map (1): Location of the study area and observation sites.
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Semivariogram and Cross-semivariogram Analysis
The semivariogram is defined as half of the average squared
difference between two attribute values separated by vector h, for one
variable (Burrough and McDonnell, 1998):
1 N

y(h )_M Z{Z(XI) Z(xi+h)}

where N(h) is the number of pairs at lag h, Z(x;) is the value of the
attribute at location (x;) and Z(x; + h) is the value of the attribute at
location (x; + h) separated by distance h. The separation vector h is
specified with some direction and distance (lag) tolerance. This
semivariogram is used to model PWP and Ks with clay and then
fitting them to one of the known semivariogram functions (Gaussian,
Exponential, and Spherical). In case of using two variables (cokriging)
the cross-semivariogram is calculated as follows:

1 N

yov(h) = TGP D {Z0(%) = Zo(xi+ hYHZv (%) - Zv(x+ )}

where Zu (AW and Ks) and Zv (clay) are the two variables. This
equation is used to model AW or Ks using the information of clay
content, and then fitting the obtained model to one of the known
cross-semivariograms  represented by Gaussian, Spherical, or
Exponential functions as follows:

The exponential model:

-h
r(h)=C,+C, 1—6)@(}]
( Ay
The Gaussian model:
3h?
7(h)=C,+C [D
[ A
The spherical model:

y(h)=C, + Cl{l. ( } for h< A

[N



82

J.Agric.&Env.Sci.Alex.Univ.,Egypt Vol.5 (3)2006

Where Cy is the nugget, C; is the sill, h is the separation distance (lag)
in meters, and Ay is the range.
Cokriging

A cokriged estimate is a weighted average in which the value
of U at location X, is estimated as a linear weighted sum of co-
variables V. If there are k variables k = 1, 2, 3,. . .V, and each
variable is measured at n, places, xik = 1, 2, 3.... N, then the value of
one variable U at X, is predicted by (Burrough and McDonnell, 1998):

. v Nv
7, (%) = D" A (xic) for all

k=1 i=1
where L is the weight assigned to variable k and Z(xix) is the value of
the variable at location i.
To avoid bias, i.e. to ensure that:

E[zu(Xo) — 2’ u(X0)]=0 and
the sum of weights Ay = 1 for U =V and
the sum of weights Ay =0 for Vi = U

The first condition (sum of weights A = 1) implies that there
must be at least one observation of U for cokriging to be possible. The
interpolation weights are chosen to minimize the variance:

&%y (%) = E[{zu(Xo) = 2°u(X0)}’]

There is one equation for each combination of sampling site
and attribute, so for estimating the value of variable j at site X,, the
equation for the g™ observation site of the k™ variable is:

\

Nv
ZZﬂimj(Xij, Xgk) + Dk = pv(Xo, Xgk)

j=1 i=1
for all g=1 to n, and all k=1 to V, where ®y is the Lagrange’s
multiplier. These equations together make-up the cokriging system.



83

J.Agric.&Env.Sci.Alex.Univ.,Egypt Vol.5 (3)2006

Cross Validation

Cross validation is a technique used to compare estimated and
true values using the information available in the data set. In cross
validation, the estimation method is tested at the locations of existing
samples. The sample value at a particular location is temporarily
discarded from the sample data set; the value at the same location is
then estimated using the remaining samples. Once the estimate is
calculated, it is compared to the true sample value that was initially
removed from the sample data set. This procedure is repeated for all
samples. This could be expressed as (Isaaks and Srivastava, 1989):

Error=r=v’-v
Where v’ is the estimated value and v is the true value. Mean square
error (MSE) is calculated from the formula:
n
MSE = 12 r’
)

Coupling Geostatistics to GIS

The estimates from cokriging and kriging (GS+, Version 7.0,
Gamma Design Software, Plainwell, M1l 2006) were formatted, then
exported to Arc View GIS software (ESRI, 1997) for better
visualization and output.

RESULTS AND DISCUSSION

Description of Spatial Patterns:

The analysis of spatial data starts with posting the data values.
Map (1) shows the spatial distribution of soil surface clay, available
water, and saturated hydraulic conductivity, sampled at 26 and 46
locations, respectively. The observations were chosen to cover the
variations in the area under investigation.
Descriptive Statistical Analysis

The statistical analysis of the clay, AW and Ks are illustrated
in Table (1). It is clear that clay and Ks have more variability than
available water as the CV% is almost more than doubled. This is
attributed to the greater number of soil samples with low clay content,
which lowered the mean compared to the standard deviation. Variance
indicates that AW has spread on a wide range contrary to clay, which
is distributed around a high number of samples with low values.
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Table 1: Descriptive statistical parameters for clay (%), AW (mm/m)

and Ks (m/d).

Statistical Parameter

Clay AW. Ks
Mean 7.25 71.54 2.53
Standard Deviation 7.08 28.11 1.88
CV,% 97.63 39.29 74.16
Variance 50.10 790.22 3.52
Minimum 0.80 33.52 0.11
Maximum 20.20 127.34 5.17
Skewness 0.72 0.49 -0.12
Kurtosis -1.27 -1.22 -1.62
No. of sample 46 26 26

Regression analysis of clay, AW and Ks indicated highly
correlated variables, which satisfies the need to carry out cokriging
analysis of AW and Ks using the information content of clay. The
correlation coefficient for this analysis are 0.94 and -0.93 for clay and
both AW and Ks, respectively. Yates and Warrick (1987) showed that
if the correlation coefficient between a primary variable and the
covariable exceeds 0.5, then the inclusion of the covariable is
favorable, and cokriging performs better than kriging. The following
equation represents the regression analysis of AW and Ks with clay:

AW (mm/m) = 44.50 + 3.73 (clay, %) r’=0.94

Ks (m/d) = 7.26 (clay, %)™ r*=-0.93
Semivariograms for Clay, AW and Ks

The parameters of the fitted semivariograms for clay, AW and
Ks are shown in Table (2), and the semivariograms are shown in

Figure (1). The formulated equations for these three variables are as
follows:

3
h h
¥Clay (h) = 25.90 + 112.80415 | ——— |- 05| ——
24390.0 24390.0
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3
h h
JAW (h) = 403.0 +1910.04 1.5 - 05
25820.0 25820.0

— 3h?
¥Ks(h) =1.89 +8.79 41— exp | ————
(9500.0)2

Table 2: Semivariogram types and parameters for properties.

Variable | Best fit model | Nugget (Co) (SC;”) Range (A¢) | R?
1

Clay, % Spherical 25.90 112.80 24390.0 | 0.88

AW, mm/m Spherical 403.00 1910.00 | 25820.0 | 0.90

Ks, m/d Gaussian 1.89 8.79 9500.0 0.94

It is clear that the coefficient of determination (R?) for all
models exceeds 0.80, which indicates the goodness of the estimation.
Moreover, the fitted Gaussian semivariogram indicates a smoothly
varying pattern for both variables (Burrough and McDonnell, 1998).

785 | . 128
a74

649

Semi variogram clay (%)

325

Semi variogram AW, , (mm/m)

00
0 2500 5000 7500 10000 0
Separation distance (m)

2500 5000 7500 10000
Separation distance (m)

Semi variogram Ks (m/d)

0 333333 666667 10000.00
Separation distance (m)

Figure (1): The semivariograms for clay (upper left), A.W. (upper right)
and Ks (below).
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The Cross-semivariogram (Collocated semivariogram)

The cross-semivariogram of clay with AW and Ks are of the
collocated type, which means that the estimation was performed using
variables measured at the same location. Table (3) and Figure (2)
indicate the parameters of the fitted positive Exponential cross-
semivariogram between clay with AW and negative exponential cross-
semivariogram between clay and Ks.

~8590.0
]/AW>CIay(h)=82.5+342.5(1—exp( A D

7/ Ks—Clay (h) = _469 - 295(1— exp (_:I'ZAZ:'OOJJ

Table 3: Cross-semivariogram parameters of clay with AW and Ks.

. . Nugget Sill Range 2
Variable Best fit model R
(Co) (Cy) (Ao)
AW and clay Exponential 82.5 3425 8590.0 0.88
Ks and clay Exponential -4.69 -29.5 12240.0 | 0.93

The most important parameter in this estimation is the high R
(0.88) and (0.93) for clay with AW and Ks obtained from the fitting
process, respectively. This high estimation regression coefficient
comes very close to that of the simple linear regression (0.88) and
(0.94) between AW and Ks with clay. The advantage of cokriging
over linear regression is that it takes into consideration the spatial
variability of the surrounding points, rather than performing blindly
the linear regression, which lacks this improvement.

FO0M AR S

ol
198.
’8M/

0.00 2500.00 5000.00 7500.00 10000.00
Separation Distance (m)

Semivariance (clay, %; AW, mm/m)
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740000

10000.00

Figure (2): The cross-semivariogram between clay and A.W. (above),
clay and Ks (below)

Cokriging Compared to Kriging

The output from cokriging process is a map of the spatial
distribution of AW and Ks based on the information content and the
high correlation with clay (Map 2 and 3). It is clear that the cokriged
AW and Ks are smoothed out, because estimated values are less
variable than actual values. This is expressed by an overestimation of
small values while large values are underestimated; however the
smoothing depends on the local data configuration (Goovaerts, 1999).
Topsoil AW and Ks were kriged in order to compare with the

cokriging results.
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Map (2): Cokriged (A) and kriged (B) of available water.
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Map (3): Cokriged (A) and kriged (B) of saturated hydraulic
conductivity.

The kriged maps (2B and 3B) are more segregated than the
cokriged ones (maps 2A and 3A) due to the limited numbers of
available data points for interpolation (26 points), compared to the
number of available points for cokriging (46 points). Moreover, the
standard error of estimation is much higher in kriging (0.166 for AW
and 0.130 for Ks) in contrast to cokriging (0.114 for AW and 0.108
for Ks), as kriging behaves irregularly near to the boundaries, where
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data points are absent. For these reasons, cokriging is much preferred
over kriging, especially if the primary variable is under-sampled, as in
the case of topsoil AW and Ks (26 samples spread over an area of
2147.59 ha). This data agreed with ElImenshawy and yehia (2006) and
contrary to what Bahnassy (2002) was concluded, where he utilized
about 21% of the total data points (28 points) to cokrige SAR using
the information content of EC.

Cross Validation of Cokriging and Kriging

The process of cross validation between the estimated and the
true value permits the evaluation of cokriging performance. Figure (3)
shows the linear regression between the cokriged and actual values of
AW. The regression equation resulted from the cokriging cross
validation for AW is as follows:

Cokriged AW (predicted) = 3.77 + 0.936 AW (measured)
r =0.807 SE prediction = 0.108

127.34

103.88

56.98

Actual Available water, mm/m

33521 -

33.52 6479 96.07 127.34

Estimated Available water, mm/m

Figur (3): Cross validation between cokriged and actual values of AW.
(The solid line is the regression line, the dot-dash line is for r = 1)

For Ks Figure (4) shows the linear regression between the cokriged
and actual values of Ks. The regression equation resulted from the
cokriging cross validation for Ks is as follows:

Cokriged Ks (predicted) = 0.25 + 0.877 Ks (measured)
r=0.82 SE prediction = 0.099
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Figure (4): Cross validation between cokriged and actual values of Ks.
(The solid line is the regression line, the dot-dash line is for r = 1)

For comparison sake, both kriged AW and Ks were cross
validated to see how the standard error (SE) of prediction behaves
(Figures 5 and 6) and check the results with cokriging estimates.
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Figure (5): Cross validation between kriged and actual values of AW.
(The solid line is the regression line, the doted line is for r = 1)

Figure (5) shows the linear regression between the kriged and
actual values of AW. The regression equation resulted from the
kriging cross validation is as follows:

Kriged AW (predicted) = -14.055 + 1.192 AW (measured)
r=0.78 SE prediction = 0.121
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Figure (6): Cross validation between kriged and actual values of Ks.
(The solid line is the regression line, the doted line is for r = 1)

For Ks Figure (6) shows the linear regression between the kriged and
actual values of Ks. The regression equation resulted from the kriging
cross validation is as follows:

Kriged Ks (predicted) = 0.25 + 0.914 Ks (measured)

r=0.80 SE prediction = 0.106
The standard error of kriging prediction of AW and Ks are
relatively higher (0.121 and 0.106) than that of cokriging (0.108 and
0.099) respectively. While, the kriging correlation coefficients for Aw
and Ks are relatively less (0.75 and 0.80), as compared to the
cokriging (0.81 and 0.82), respectively. For these reasons, cokriging is
preferred over kriging, especially in the case of under-sampling the
variable of interest. Moreover, there must be an intensely sampled

covariable, which is correlated with the variable of interest.
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CONCLUSIONS

Spatial variability in measured AW and Ks has significant
spatial correlation to study predictions of AW and Ks from clay using
kriging and cokriging procedures. The data of AW and Ks in topsoil
were significantly correlated to clay. The results also showed that
using cokiging with 46 clay values, 26 observed values of AW and Ks
were sufficient to obtain the same information from that obtained with
46 measurements of AW and Ks. The results of cross validation
standard error of cokriging and kriging indicate that cokriging was
more successful than kriging when AW or Ks are under-sampled. Ks
and AW are widely used in modeling of water and chemical transport
in soils and irrigation practices. The spatial variability of this process
on a landscape is important, affecting the accuracy of the modeling
work and efficiency of the irrigation practices. However, measuring
AW and Ks are time- and labor consuming. Therefore, estimation of
this process with a reasonable accuracy given a minimal observed
values using kriging and cokriging is very important.
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