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Abstract—Accurale modeling of photonic devices is essential lor the development of new higher
performance optical components required by current and future wide bandwidth communication
syslems. ‘The goal ol this paper is (o formulale a Wavelet-Galerkin method (o solve a paraxial
wave cquation numerically. The numerical simulation is applicd w o real optieal dillraction
graling fabricaled by o double—ion exchange (echnigue.

The Wavelet solutions have much Letler precision but are slightly slower than the finite
difference solution owing 10 the need to transform the samples from physical space into Wavelet
space and back again. Although the Wavelet solutions require slightly more computational effort
than the finite dilference solution, the gains in accuracy, particularly with the higher order
Wavelets, far outweigh lhe increase in cost. Furthermore, Wavelets have the capability of
representing solutions at different levels of resolution, which makes them particularly useful for
developing hierarchical solutions to engineer problems.

Key words —Wavelet-Galerkin method (WGM), finite-diflference beam propagation methad
(FD-BPM), diffraction grating, Partial differential equation (PDE), methods of weighied
residuals (MWR).

[. Introduction we :
Schrodinger equations [0].

in recent years, the subject of Wavelels has

Maxwell equations in time domain [3-5}, and

received much attention because of the
comprehensive nathemalical power and the
good application potential of Wavelels in many
interesting physical problems. The [ield of
Wavelets, despite being relatively recenl, is vasl
and is developing very rapidly. This is true in
relation to theorelical aspecis, as well as o
applications of Wavelets | ].

The flexibifily of Wavelet bases has already
allowed (heir successful application (© (he
resofution of various equations: Navier=Stokes
equations (using divergence-free Wavelets) (2],

The development of the discretization
formulations is based on weak (orm functionals
and the use of Lagrange multiplier method to
enforce the essential boundary conditions.
Behiry {7} presented the application of the
Wavelet-Galerkin method for one dimensional
inhomogeneous diffusion equations subject to
mass specification, Behiry and [lashish |8]
presenied a comparison of a Wavelet-Galerkin
procedure  with  a  Crank-Nicolson-Gaterkin
procedure for the dilfusion equation subject to
the specification of mass. The numerical results
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obained show that the
procedure gives better results on the FD-BPM.

Il. THEORY

|

IL.A Galerkim Method

the
functional basis. The transiates of a Wavelet for
all dilations form an unconditional orthonormal

bases of L'(R) and the translates of a sealing
function for all dilations form an unconditional

orthonormal bases for ¥, < L(R), which is a

Lz, 7)]=0. m ac & (n
where L is a linear differential operalor and
with boundary conditions on-

Slu)=0, in 202 ()

where the @, (r, v)are known analytic functions,
and the a, are cocfficients 10 be determined.
Substituting (3) in (1) results in 3 monzer
residual R given by

Royo,ax)efatle)

In order 1o illustrate how the wnknown
cocllicients @, are uniguely determined, and
hence obtain the approximate solution &, the
formation of ihe Galerkin system of equations
is demonstrated. The Galerkin method is &
member of a larger class of methods known as
the methods of weighted residuals (MWR). The
MWR is an optimizing criterion 1o select the
specific numerical values for the parameters a,
to obtain the best solution. By "'the best™ it is
meant that the solution is as close as possible,
in some sense, 10 the exact solution. In these

methods the coefficients a, are determined by
solving the sysiem of equations:

W, R)=0. j=123. .n (L]
where the inner product of two arbitrary
functions (f,g) on (2 s defined as:

U-:l-!f:ﬂ 0]

and from this the method gets its
name as W,(x.y) is referred 1o as a weight

function or a test function. From the definition
of the residual given in (4), the system of
equations (5) can be writien as:

(r,._._tlt,z.h]]-n.j-r.:_t ..... n M
or in matrix form as:

Aa=0 (8)
where

ey thes ) oy Lo, )) o (w).Llp,
A= Pl'fbf‘ *l"!‘hl ":' #]'-"h' Ig]

o tlor) . tles) — B0, tlp,
and
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ﬂ; [1]
a<|” |, 0=|" (10)
a, 0

Since independent relationships are necded
to oblain a unique solution for the unknown
coefficients a/’s, it is clear that # (x, y) must
be independent functions,

If the s arc members of a complete set of
functions, then as n — @ the residual B must
be orthogonal to every member of that
complete set of funclions. This implies that
R converges 1o zero in the mean as # = o I
R converges to 2ero in the mean and the
boundary conditions are satisfied exactly, then
it would be cxpected thal the approximate
solution to converge 1o the exact solution in the
mean, that is.

limu~,| =0 (1

A varicly of weighted residual methods is
obtained depending on the choice of the weight
fonction. Some frequently used weighted
residual methods are the subdomain method,
the point collocntion method, the least square
method, and the Galerkin method. The Galerkin
method defines W, (x, v) as:

W/(xy)=¢, Isjsn

it follows that in the Galerkin method the
trial (lest) functions are orthogonal to the
residual and the matrix A in Eq.(9) are given
by:

h-&hﬁ I-;.L(nli " {ﬂ-d’.

i (n-i:-inﬁ (02 LUes)) (ﬂ-f;ﬁ'- (12)
(utlo) @n.thes) - (oa.thoa)

11.B Multiresolution Analysis on £*(R)

The multiresclution analysis presented by
Mallat [10] is considercd the main tool in
merely all constructions of Wavelet bascs. A
multiresolution analysis s an increasing

E 38

sequence ¥, ]"zofclued subspaces of L’(R)
satisfying:
LoVl ,checVal,cl,.

i ¥, {0}, :}V,-L{n)

Sy, @ flaa)e,,
" Aoy, = fx+1)eV,

iv. 3@(x)e ¥, such that {@(x -k},

form an orthonormal basis of Ve As each
subspace has a different resolution, hence the
name multiresolution analysis. The sequence of
subspaces ¥, can be interpreted as follows. If P
is the projection of fon ¥, then P, shows the
details of f of size larger than 27. The higher f is
the more details of f the projection shows. 5o, a
function f can be considered as a limit of
suceessive projections on these subspaces:
_f = lim ﬁ

J -

Define W, 1o be the orthogonal complement of:
ViinV,, ieV,, =V W, (14)

This space is sometimes called the innovation
space. The projection g, of fon W, 1ells what to
be added 10 P, 10 obtain details twice smalter,
i.e

Ly

(13)

(13)

Constructing a basis for ¥, begins with @(;)
known as the scaling function. Conditions (Wi}
and (iv) of the muliiresolution enalysis show
that for an integer ; the set of functions
P!-i{‘“u; forms an orthonormal basis of V,

where:
®,,(x)= 2@ (2'x-4) (16)

Since rﬂ =¥ there exists a sequence known
as Wavelel filter coefficients, in the Hilbert
sequences space L’ such that:

olx)= )Ektﬁ(h—k.]

-F'ﬂ;;

(n

which is known as the scaling function dilation
equation or the Iwo-scale relation. Also a
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function @{z), known as mother Wavelet
function, can be defined swch tha
bor( = k )}z forms am orthonormal basis of W,

and {pir—i)},,; forms an onhonormal basis
of W, where:

q.r“{:}-.?"”v{)‘l-l} (18}

Similarly y(x) satisfies s own dilation
equation:

-.darkiﬁ:a.w[h-ﬂ (19)

Thus two possible orthonormal bases of ¥ are
4 {el]y g and:

ol - kpow,u(i=00, j-1),

It is noticed from multiresolution definition thai

W'z are mutually orthogonal and that:
Vipp =V @, =B, @, @0 @ d. (20}
and
2 1
L {R}'jh”f (2}

From the sbove analysis, a definition 10
Wavelets can be given.

Definition -(Wavelet) A Wavelet is 2 function
¥(x)e LK) such that the family of functions:

Pl g = g

where f and Kk are arbitrary iniegers, w(x),, is
an orthonormal basis of the Hilbem space
L?(R). Mallst [10] presented an algorithm,
known as Mallat algorithm, 1o change from a
cerain representstion scale to another,

r{:“ » -.t] (22)

IlL. Solving Scalar Wave Equation

As shown in the previous section, applying
properties af multiresolution analysis [10-11] 10
the Galerkin method offers a few improvements
over traditional trial functions. Howewer, it
resiricts our solutions 1o clements of ¥, In
solving partial difTercntial equations arising
from physical phenomena solutions will belong
to the class of finite enerpy surfaces, or

£*(R?). Thus it would be more beneficial to
have a scheme that will solve the PDE in
C(R) ruher than in ¥, c £2(R). This is
where the Wavelets role is, since they can form
orthogonal bases of L7[R* ),

Let us sce how a hierarchy of Wavelet
solulions to PDEs may be developed using
scaling function bases. In order 1o demonsirule
the Wavelel technique, we consider the thiee
dimensional second order differential eguation
based on Maxwell's equations [I12] and the
scalar wave equation for the propagating beam
problem indﬁmﬁtﬁ[laj'
a4 E-'u My ?_atlo
i T ar" e~ p=s
where K= &0, 5=k, 'n' | (a==T and &
is known as the wave-pumber. In free space,

= Ixfl. n s the refractive index distribution
of waveguide structure, and n, the reference
refractive index 1o be appropriately chosen.

At this point, the above equation is completely
aquivalent t the exact Helmbolz equation
|14]. Except that it Is expressed in terms of w It
15 now assumed that the variation of w with z =
sulficiently slow so thal the firslt term of
above can be neglected with respect to the
sccond, this is the familiar slowly varying
envelope approximation, and in this context |1 is
also referred to s the paraxisl or parmbolic
approximation. With this assumption and afier
slight rearrangement, the Eqn. (23) reduces to:

& | |8 &
e k= R

This is the basic beam propagation equalion in
three dimensions (30). Simplification 10 two
dimensions (20) is obtained by omitting any
dependence on p. Given an inpul field
wlx,y.z)=0, the sbove cquation determines
the evolution of the field in the space 1> 0. kt
is important bo recognize what has been gained
and lost in the above approach. Fimst, the
factoring of the rapid phase varintion allows the
siowly varying ficld to be represenied
numerically on & longitudinal grid (i.2.. tlong 2)
that can be much coarser than the wavelength
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for many problems, contributing in part to the
efficiency of the ftechnique. Second, the
elimination of the second derivative term in z
reduces the probiem from a sccond-order
boundary value problem requiring ileration or
eigenvalue analysis, 10 2 first-order initial value
problem that can be solved by simple
“integration™ of the above equation along the
propagation direction. This latter paint is also a
major factor in determining the efficiency of
the algorithm, implying a time reduction by a
factor of at least of the order of (the number of
longitudinal grid points) compared 10 full
numerical solution of the Helmholtz equation.
The above benefits have not come withoul a
price. The slowly varying envelope
approximation himits consideration to ficlds that
propagale primarily along the axis (ie.
paraxiality) and also places restrictions on lhe
index contrast (more precisely, the rate of
change of index with z, which is a combination
of index contrast and propagation angle). In
addition, ficlds that have a complicaled
superposition of phasc variation, such those
existing in multimode devices such as
multimode-interference may not be accurately
modeled if the phase variation is critical to
device behavior. A second key issue beyond the
above restrictions on the variation ol u is that
the elimination of the second derivative also
climinates the possibility far backward
traveling wave solutions; thus devices for
which reflection is significant will nol be
sccurately modeled. In the following section
the numerical solution of Eqn. (24) discussed
above is considered.

I[. A Numerical Solution Using Finite
Difference (FD-BPM)

In the finite-difference approach, the field in
the transverse (x, y) plane is represented only
al discrete points on a2 grid, and at discrele
planes along the longitudinal or propagation
direction z [34] Given the discretized field at
one plane, the goal is to derive numerical
equations that determine the field at the next
plane. This elementary propagation step is then
repeated to determine the field throughout the
structure. For simplicity, the approach is
illustrated for a scalar field in 2D (x.z). Let u"

E. 40

denote the field at transverse grid point i and
longitudinal plane n, and assume that the grid
poimnts and planes are equally spaced by Ax and
dz apart, respectively. In the Crank-Nicholson
method Eqn. {24) s represented at the mid
plane between the known plane and the
unknown planc as follows:

ah' . | 8_1u_ :_ g

s [&x Le(k?-p )]u 25)
ut w1

x  2p -

[ia- * (K (.~ znr;:)i - )]'E':u;ﬂ

Here 87 represents the standard second order
difference operator 8w, =u, , - 2u, +u,,, and
400 =2, +dz/ 2. The above cquation can

be rearranged into the form of a standard
ridiagonal matrix equation [15] for the
onknown field «"'' in terms of known
quantitics, resulting in

wif el

—ou™ +bu!t" —aull) 2au® +cul +bu! (27)
where
.
24’
& &k, G
_:i:j_- 3 GI_,(I'!'&J“H{,]#’.?}*QHQ
& Ak
e ;lﬂf(ﬂ'ﬂf]*?ﬂ‘aﬂn

These results in a tnidiagonal system of
linear equations, which can be solved very
efficiently. The solution 1o this system of
cquations can be also shown to be stable.

The numerical simulations are applied to
planar diffraction grating waveguide [16] as
shown in Fig. (1). thc measured values of the
grating of the effective refractive index of the
guided wave mode (n.; and n.;) have done with
a He-Ne laser (4=0.6328um) through prism
couplers are equal fo n.; = 1.512689, n,; =
1.513739 the pericdicity of the grating is
(A=10 gm) and the incident anple of the
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optical wavelength as a Bragg angle which is
given by:

A

ﬂ"“.l[:n ]E.u.;...masuw_

ep P

=

Substrate |
Fig. (1) Phase diffraction grating

Grating

A Gaussian profile whose full width at hail
maximum 15 w,=10 pm s used as the mitial

ficld profile up{r‘._:ﬂ:l.ﬂp[_lr_lhﬂ.‘]_ The

computational window is 150pm for all the
simulations. For all methods the accuracy of the
results depend on the number of grid points ¥
in the transverse, ie, x direction, and the size
of the propagation sieps, Az in the direction of
propagalion, ie, in z-direcrion. In all methods
N=128, dz=lpym amd the propagation
interaction length 15 474 gm

The simulation results are shown in Fig. (2-a.b)
for @ beam intensity at interaction length
474um. For more details reler to |17) for the
same authors,

[ILB  Numerical Solution Using
Wavelet-Galerkin Method (WGM)

The Wavelets method offers  several
advaniages over the waditional methods such as
(1) the MRA ability of Wavelets provides a
local means of developing a hierarchy of
solutions; (2) the solution of the Wavelet
method can be refined in reglons of high
gradient without having to regenerate the mesh
for the entire problem and (3) the trade-off
between continuity and compact suppon is well
balanced. Full details of the Wavelel method for
1D PDEs are referred to [18] and for 2D PDEs
o [19-20] For those applications periodic

Wavelets are used lo cooperate boundary
conditions.

F

"w
il

Propagation direction z (um)

|

.|,‘
|}
I

|
|

(a) Transverse direction x (pam)

T otel elactne fald intdn BBy

¥
s 5 9 B

" & 8
(b) Transverse direction x {jm)

Fig. (2) A grating BPM solution using FD
(a) Field profile through 474 um of the grating.
(b) Output beam intensity of 474pm of the

grating.
But enly few applications of Wavelet-Galerkin
method have been reported in clectromegnetics.
This section investigates the feasibility of
Wavelet-Galerkin method for compuiating of
electromagnetic fields inside opfical planar
diffraction grating.
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I1i.B | Comnection cocfTicients

Since the scaling function and Wavelets do
not have an cxplicit analytical expredsion but
are implicitly determined by the Wavelet filter
coeMcients, i s necessary 10 develop
ulgorithms to compute several integraly, called
the connection coefTicients. These coclficients,
involving the scaling function andior s
denvalives, occur in the application of the
Wavelel-Galerkin procedure 1o differential and
micgral equations. Consader Daubechies scaling
function salisfying the dilation Eqn. (17) with
A=0, 1, N1, thes the following are the
connection coelMicients used in the fllowing
sections.

M7 (x)e ] ymolr -k (28)

r=leVp-nebly @9

e L U L O
and

o = ff:_[—‘} ()

The apphcations of Waveler-Galerkin method
were ol first himited 1o the cases where the
problem domain is unbounded or the boundary
conditions are periodic [0} Algorithms for
compuling these connection coeflicienis i
different values of 1 on bounded intervals given
in [21] motivated applying the method 1o

bounded domains [22-26]

B2 Waveiet-Galerkin  Method
(WGM)

In this section the WGM is applied to Eqn. (24)

ulr, p0)a vz ) lexat, Ocyetl, (32)

where [, and L, are real constant and 2 denoics
the direction of light Let the

solution sz, y,7) of (24) be approximated by

the /* level Wavelet series.

E 42
W (xrz)=
f_g::g:":u{l]’;nhf“ >0 o
Substituting (33) 1n (24) yields:
EE0,46)0,040.0) -

£ L0 ()], ()0, 0)s |
53| ST, ) W - 2]
k??.j# {l]",.l {r}’p (»)

(34)

where
o, - el 4
----EI-J*—'ﬁ o ‘..{‘]'T ]

.j..l.l izl=
;,.g,1=;"_"£,5ﬂﬂ For £ and§ having the same

limits as & and ( respectively, the Galerkin
discretization scheme yields:

!
ﬁ'm“'uﬁa'ﬁ"{ﬁ’m"’
Carn L + ?;“ Jal Iﬂﬂ.;lf_-.l:- * (33)

{I, 'F‘hl'.;l b {.j.ui -'H‘
where

i,y -1‘19{1‘: -llﬂ{!’:-fh
T l-r'h"-r "tl' ﬁ'.ub'l'ﬂl- f}

'r:.'l"?*"?'*}"{:’?'sh'

- (37)
=2, - 8)-ris 2 (0)-8)

€ara -I‘II’{!':-#}‘{J-’:-!}&
= AL, -4)- 120 0)-)
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&ss _1JT¢'{7_JJ,_t}¢[21y_s]py
L]

= rie, -s)- rilrio)-s)
define the matrices
A, =[ﬂ';.u l Ay l[nﬂ]- €=2" [’-‘u,l]

S PP L O ["f;’*]'
Then {35} may be written as

(3%

(40)

where 4land ¢| are the transpose of the
matrices 4, and C, respectively. Using the
Kronecker product the system takes the form

CU =30, (41)
where Tap, @i 04,00,

A=A 04 0 ewepNU=veclll}

Using Crank-Nicolson scheme 1o approximaie Lhe
propagation in z direciion, (41) becomes

[,---—r]rﬂ” [:-Tf)a* (42)

Eqn. (41) describes an ilerative scheme to
compute the value of wixy 2., from wfx .z,
where r , = ndz. The pexi step i5 1o obtain the
initial value of the solution mfxy,0) in vecior
form and then enforce the boundary conditions
to the system. Substiluting (33) in (32) and
applying the Galerkin discretization yields

Iﬂ"-r[['l' TV00.19), 5 et ] G

The simulation results are shown in Fig. (1-a,b)
for a beam intensity at interaction length
AdTdpm,

IV. Comparison of results

The Waveler solutions have much better
precision [26] bul are slightly slower than the
finite difference solution owing to the need to
transform the samples from physical space into
Wavelet space and back again. This overhead

becomes less significant as the sample size
INCIEnIEE.

] (] r
4,0C *crw:]- Ayl AL

o

&
[}
4
£ :
£ e
i -
p L
. Lo |
; Lul
L el
- iy
]
-

t 2 9 A W G ®
(b)  Transverse direction x (um)
Fig. (3] A grating solution using WGM

(#) Field profile through 474 um of the grating
{b) Outpui beam intensity of 474 gm of the
grafing at approximation level f=3.

More imporiantly, there is a negligible
variation in computation time as the support of
the Wavelet increases. Thus the D6 Wavelel
solution compares extremely favorably with the
finite difference solution us shown in Fig. (4),
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—,
—

= e
0 WD -

Total electric field Inten
=&5E

=S8

=

" 5 @ % W » K
Transverse drecton X (um)
Fig.(4) Output beam intensity of 474 pum of

the grating using WGM at approximation level
J=3 and FD-BPM.

V. Conclusions

In engineering preblems, we oflen require a
quick rough estimate of the solution at the
preliminary stage, which may later be refined as
the design or investigation progresses. Wavelets
have the capability of providing a multilevel
description of the solution . The multiresolution
property of Wavelets, along with their
localization property, suggests that we may
obtain an initial coarse description of the
solution with litile computational effort and
then successively refine the solution in regions
of interest with a minimum of extra effort.
Preliminary research indicates that Wavelets
are a strong contender to finite elements in this
respect, however, further research is still
required on the subject,

The Wavelet method has been shown 1o be 2
powerful numerical (ool for the fast and
accurate solution of the scalar wave equation.
Solutions obtained using the Daubechies
coefficient Wavelets have been compared with
the finite difference solution and the Wavelel
solutions have been found to converge much
faster than the finite difference solution [26].
Although the Wavelet solutions require slightly
more computational cffort than the finite

difference solution, the pgains in accuracy,
particularly with the higher order Wavelets, far
outweigh the increase in cost. Furthermore,
Wavelets have the capability of representing
solutions at different levels of resolution, which
makes them particularly useful for developing
hierarchical solutions 1o engineer problems.
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