Mansoura University

Faculty of Engineering

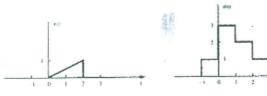
Department of Electronics and

Communications Engineering

3rd Year Electronics

First Semester (Final Exam.)

Exam Time: 3 Hours


Subject: Signal Analysis Course code: COM 9313

Exam Date: 2-1-2013

Attempt all questions. Assume any missed data. Full mark is 100

Q.1.a) Express the signals shown in terms of unit step functions

[5 Marks]

Q.1.b) Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period. [5 Marks]

i.
$$x(t) = e^{j\pi t} + \cos(2t)$$

ii.
$$x(n) = \cos(\frac{n}{2})\cos(\frac{\pi n}{4})$$

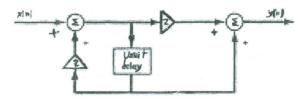
Q.1.c) Evaluate each of the following integrals

[5 Marks]

i.
$$\int_0^{2\pi} t \sin \frac{t}{2} \delta(\pi - t) dt$$

ii.
$$\int_{-\infty}^{t} \cos(\tau) \delta(\tau) d\tau$$

Q.1.d) A discrete-time system has an impulse response h(n) given by:


$$h(n) = 0.5\delta(n) + \delta(n-1) + 0.5\delta(n-2)$$

- i. Plot h(n) versus n. Is the filter causal? Why?
- ii. Is the difference equation recursive or non-recursive?
- iii. Is the filter specified by h(n) BIBO stable? Why?
- iv. Is the filter FIR? Why?

[5 Marks]

- **Q.2.a)** An LTI system has an impulse response given by $e^{-3t}u(t)$. Determine the output of the system for an input, x(t), given by u(t-1). [5 Marks]
- Q.2.b) Write the input-output equation for the system shown in figure

[5 Marks]

Q.2.c) Find the inverse Laplace transform of X(s) given by

$$X(s) = \frac{2 + 2se^{-2s} + 4e^{-4s}}{s^2 + 4s + 3} - 3 < \text{Re}(s) < -1$$
 [5 Marks]

Q.2.d) The step response of a continuous LTI system is give by $S(t) = 2e^{-3t}u(t)$. Find the output of the system when the input is given by $x(t) = e^{-t}u(t)$. [5 Marks]

Q.3.a) Consider an LTI system described by the differential equation

$$y''(t) + 5y'(t) + 6y(t) = x(t),$$
 $y(0) = 2,$ $y'(0) = 1$

- i. Find the system function. Locate poles and zeros in the s-plane.
- ii. Find the impulse response of the system.
- iii. Find the output of the system if x(t) = u(t).
- iv. What are the zero-input response and the zero-state response?

[10 Marks]

Q.3.b) Find the inverse Z-transform of each of the following functions using power series expansion: [10 Marks]

i.
$$X(z) = \frac{z}{(z-1)(z-2)}$$
 $1 < |z| < 2$

ii.
$$X(z) = \log(\frac{1}{1 - 2z^{-1}})$$
 $|z| > 2$

Q.3.c) Consider a system described by

$$y(n) - 5y(n-1) + 6y(n-2) = x(n),$$
 $y(-1) = 3,$ $y(-2) = 2,$ $x(n) = u(n)$

- i. Find the system function and locate its poles and zeros in the complex plane.
- ii. Determine the output of the system.
- iii. Express the output y(n) as a sum of two components; the zero-state response and the zero-input response. [10 Marks]

Q.4.a) Consider a periodic square wave x(t) given by

$$x(t) = \begin{cases} 10 & 0 \le t \le 1 \\ 0 & 1 \le t \le 2 \end{cases}, \qquad x(t) = x(t+2)$$

- i. Sketch x(t). State the conditions required for the convergence of Fourier series.
- ii. Find the complex exponential Fourier series of x(t).
- iii. Use the result of (ii) to get the trigonometric Fourier series of x(t).
- iv. If x(t) is applied as an input to a high-pass filter with frequency response

$$H(\omega) = \begin{cases} 1 & |\omega| \ge 4\pi \\ 0 & |\omega| < 4\pi \end{cases}$$

Find the output of the filter.

[15 Marks]

Q.4.b) An ideal phase shifter is represented by the following equation

$$H(\omega) = \begin{cases} e^{-j\frac{\pi}{2}} & \omega > 0 \\ e^{j\frac{\pi}{2}} & \omega < 0 \end{cases}$$

- i. Find the impulse response h(t) of this phase shifter.
- ii. Find the output y(t) when the input is $x(t) = \cos \omega_0 t$

[5 Marks]

Q.4.c) Sketch the Bode plot for the following frequency response

$$H(\omega) = \frac{100(1+j\omega)}{(10+j\omega/10)(100-j\omega/10)}$$
 [10 Marks]

My best wishes to all of you!

Assis. Prof. Hossam El-Din Moustafa