Mansoura University
Faculty of Engineering
Dept. of Electrical Engineering
First Year

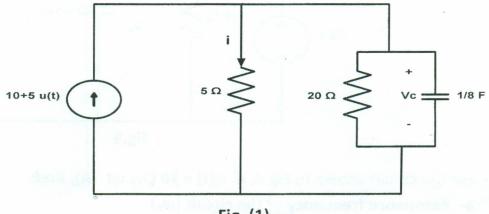
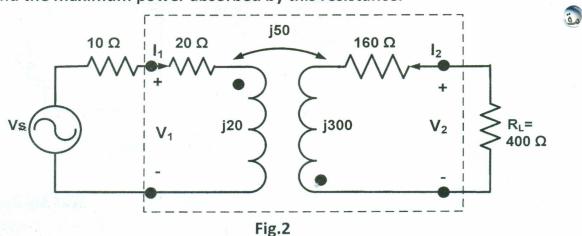
Final Exam (23/6/2011) Electric Circuits-2 Full Mark (90) Time: 3 Hours

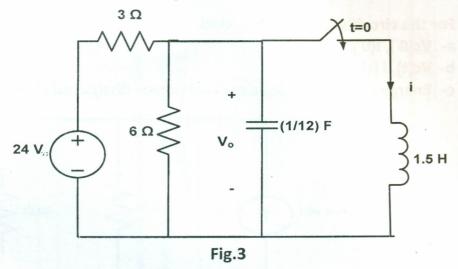
Please Answer The Followings:

1- For the circuit shown in Fig.1, find

(15 Mark)

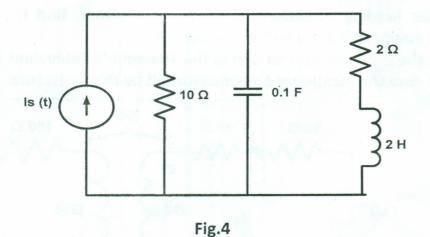
- a- Vc(0⁻), I(0⁻).
- b- Vc(t), I (t).
- c- Energy stored in a capacitor and power dissipated in $5\Omega\,$ resistance at t=2 $\tau.$


Fig. (1)

- 2- The linear transformer in the circuit shown in Fig.2 represents a two-port network. The voltage source Vs = 100 V (r.m.s). (30 Mark)
 - a- Find the Z-parameters of the linear transformer.
 - b- Under loading conditions of linear transformer, find I_1 , total circuit impedance and power delivered by the source.
 - c- Use the Z-parameters to derive the Thevenin's equivalent circuit with respect to R_L and find the maximum power absorbed by this resistance.

- 3- The switch in the circuit shown in Fig.3 has been open a long time before closing at t=0, find:


 (25 Mark)
 - a- i(0+) and Vo(0+).
 - b- i(t) for $t \ge 0$.
 - c- Energy stored in inductor at steady-state.

4- For the circuit shown in Fig.4, if $Is(t) = 10 \cos \omega t$ (A), find:

(20Mark)

- a- Resonance frequency of the circuit (ω_0).
- b- The magnitude of $Y(\omega)$ at $\omega=0$, ω_0 , and ∞ .
- c- Circuit quality factor (Q) , bandwidth (B) and half power frequency points (ω_1 , ω_2).
- d- Power delivered by the current source at resonance and at ω_1 , ω_2 .

With My Best W ishes
Prof. Dr. Mohammed El-Saied