Mansoiwra Engineering Journal, (MEI), Vol. 32, No. 4, December 2007. M. 58
ELECTRO-MECHANICAL MODELLING AND LOAD SWAY
CONTROL OF GANTRY CRANES
Aland UL Jealdl Jilad b afadly a0 Andall

F.S. Al-Fares**, T. G. A, Al-Figi*, H.R. Al-Mubarak*** and M.S. Al-Ajmi**

*  Prof,, Production Eng. Dept., Facully of Eng., Ain Shams Universily, Cairo, Egypl, and Now with the Depl.
ol Prod. Tech., College of Tech. Studies, Authority of Applied Edvcation, Kuwail, tigildyahoo.co uk..
** Assistant Prof, *+* Teacher,
Dept. of Production Technology. College of Tech. Studics, Authorily of Apphied Education. Kuwail

Gk e aadind iy - Al LYY Jleal ) el b aSadll L glud Cadll aagy
Al Sy ple 5 od e Saaliny 70 gai Jalainod o5 088 ol gall | 3 b gl J ghail il
e B AS s oy 3Deall 3, M SN Sl e sl LS (55 by 55 S
o Ol e W1 8 8T LS ¢ Janl g, A pa g gl el R all 38 a5 eliaall (s
a3 28y S AL AN S pall 305 8 Aaad il AN Al A g NS jaall 3ga
A5y e (Baabal 28 ASGISal 5 A eI AN O il BISH A8UAY (oo 5 gl 13 dalyiia
A8l Y alee BliuY mil aY

pSal yiaiaS andiud Ll Cus oW Ja Ay S IS jandl e2aly JMadl 2 gl il
Ulsy o aa g dale 48 ja (3 ol oy a5 5lSla Coad @lld day g ¢ Sabnall 2l il s
D) (W (5350 bas ans 80 e 8 Lo Jaall A8 Lgra @i 5508 o ) s STl
588 o (ohae Andla A0S (53 aSal b 1 )T a5 A ade 5 AaS (o 11 55 daall
Ses Jaiy (Gac iy gigad o 7 gl dlaill Gudatyy (Blaall skl ) sdad Gasall Janall
Jsluzide ju baa sl LaS 230 aal Slad W45l ) ] (aleail Bas §) Gl 45 6 408
Jalaill Ll g 5

ABSTRACT

in this work, a nonlinear model representing the dynamics of the container sway of a gantry crane is
derived. The dynamics of the induction motors are also taken into consideration in addition to the
simultaneous travelling, trolley and hoisting motions. The data of an actual 45-ton gantry crane is
used to simulate the behavior of the container under an actual transportation plan. A simulation
example is then presented to illustrate the uncontrolled system response. The conlainer sway is
found to be high such that a control scheme has (o be implemented to suppress the load sway. A
feedback control scheme is developed to suppress load sway. The feedback control matrix is
chosen such that the poles of the closed-lcop system are arbitrary assigned. The control scheme is
applied and the simulation results illustrate the effectiveness of the proposed scheme.
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1. INTRODUCTION

Gantry cranes are widely used in poris, and
are installed at quayside to handle heavy
containers. The necessity o increase the
travelling, trolley and hoisting speed generally
induces undesirable sway of the container,
and serious damage could occur during load
transportation. Therefore, a satisfactory
control  scheme, based on an accurate
dynamical model, is desirable to suppress
load sway.

In the last decades, several investigators
considered the modelling and contrel of
gantry cranes as a nonliear control poblem [1-
4]. Most of existing approaches consist of a
two-stage procedure: off-line (rajectory/path
planning, carried out in accordance with
proper optimisation criteria, and on-line
tracking by traditional confroliers. Optimal
control techniques have been widely used to
address the path planning problem. Specific
paths minimising traveling time, energy
consumption or proper performance indexes
linked to the swing angle and its derivative
have been proposed in the literature.
Nevertheless, due to model uncertainties and
many other implementation faclors, it ofien
happens that the actual crane behavior
significantly differs from the “optimal”,
desired, one. The usual geal is to achieve zero
swing only at the end of the transport, and a
two-stage contro! structure is often used: a
“tracking” controller during the load transfer,
and a “stabilizing” one 10 be switched on
when a suitable vicinity of the destination
point is achieved. Barmeshwar et al. [5]
proposed a nonlinear control strategy for the
trotly crane system using Lyapunov method
without considering the sway angle dynamics
tn the stability analysis. Fang et al. (6]
designed a proportional derivative (PD)
controller to regulate the overhead crane
system 10 the desired position with natural
damping of sway oscillation. Liv et al. [7)
developed a fuzzy logic control with stiding

mode control for an overhead crane system.
Fang et al. {8] developed a nonlinear coupling
control law to stabilize a 3-DOF overhead
crane by using Lasalle invariance theorem.
However the parameters must be known in
advance. Burg et al. [9] used the variable
transformation method to regulate the crane
system. d'Andrea-Novel and Boustany [10]
proposed an adaptive feedback linearization
method for mechanical systems of the
overhead crane type. Karkoub and Zribi [11]
used the pssivity property of mechanical
system in the design of the nonlinear control
of overhead crane. Ishide et al. [12]construct a
fuzzy back-propagation neural network based
control. However their results have shown
that the speed of the (rolly is large at the
desived destination.Yu et al. [13] developed a
nonlicar tracking for load position and
velocily, However the results are shown for
sway angle dynamics much faster than the
cart motion dynamics. Another approch is
developed by Kiss et al. [14] in which an
output feedback PD controller is used to
stabilize a nonlinear crane system. Benhidjeb
and Gissinger [15] compared a fuzzy logic
control system with Linear Quadratic
Guassian control (LQG) for an overhead
crane.Yi et al. [16] developed a fuzzy
controller for anti-swing and position control
for an overhead crane based on Single Input
Rule  Modules  (SIRMs)  dynamically
connected fuzzy interference model. M. El-
Raheb studied the effect the cable fiexibility
on the load. It is found that cable flexibility
has negligible effect on flexural response,
However, the above work neglected the
dynamics of the driving electrical motors,
which could lead to considerable errors.
Also, it is convenient to use the inputs of the
driving motors as control variables.

In this work, a nonlinear dynamic model of
a gantry crane is derived. The dynamics of the
induction motors as well as the simultaneous
travel, transverse and hoisting motions are
taken into consideration. The derived model is
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then lipearized about the normal operaling
conditions, and a simulation example is then
presented to illustrate the container sway
under an actual transportation plan. It is
found that the sway is relatively high.
Therefore a control scheme is proposed to
suppress Lthe container sway. The torques of
the driving crane motors are adjusted by
feeding back the sway angles and their
derivatives. The feedback control malrix is
chosen such that the poles of the clased-loop
system are arbitrary assigned. The control
scheme is applied and the simulation results
illustrate the ecffectivencss of the proposed
scheme.

2. DYNAMICAL MODELLING

The dynamical model of the gantry crane
shown in Fig. Ib will be derived. The crane
traveis parallel to the quayside on the railway
while the trolley moves in Lhe transverse
direction carrying the container. The hoisting
of the container takes place during
transportation. The conlainer, which can be
assumed as a suspended load (rom point O,
will be assumed as a rigid body. Crane motors
are induction motors for their simplicity and
reliability. In the following analysis, the
travel, hoisting and troliey motors will be
modelled using the d-q technique [20]. The
kinetic and potential energies of the
compound electrocmechanical system will be
obtained, and the dynamic equations
associated with the generalized coordinates
will be derived, using the Lagrangian
approach. This will be derived and presented
in the following subsections.

2.1 Lagrangian Function of the System
The coordinates of the container

x.,y.and z_ can be expressed in terms of the

coordinates of the crane, "u, v and w", the
container sway angle, & and@,, and the
length of the wire “/" as [uliows;

x, =u+!sing sing,,
y.=v+isind cosd,, and
z, =w+{cosf,

The kinetic energy of the mechanical
system represents the Kkinetic energy of the
suspended container of mass as, the trolley
and the travelling gantry crane. The
nomenciature can be found at the end of the
paper, and the kinetic energy can be written as
follows:

|
KE., = %M(xj +yi 4+ 7;3) + Em,a?

. |
+%fﬂ€; (:()Sztf?l~1—5,*‘.>'.'2(:Jr2 + ir?')

N2
+-l—[,(€?f +87 sin’ 8,)+11, “
2 2

2y 2
F o f [L} +l]3[i}
) 27\

The potential energy of the mechanical
subsystem represents the potential energy of
lhe suspended container, and the stored
energy in the wire ropes of stiffness ¢. The

following expression of the potential energy
can be cbtained;

(1

PE = %Qqﬁz - Mglcos@, (2)

The equivalent kinetic energy of the crane
induction motors; namely the travelling motor
“r, trolley motor “f” and the hoisting motor
“h" can be expressed in the following
equations;

g B L 5
B IES NN
I Lrwjrvr]n +Lﬂ'fr!]rr
KE., =— (4)
204 (1,0, +70,)
’_L ] f“ + L Il![?(
K.E.,,:l wie wls )
2 J'm! (Ifn “’fli’ + ]J‘n I.ﬁr )

Now, the kinetic and potential energy of the
system can be expressed in the egs. (i-5), and
the Lagrangian function can be obtained as
follows;

L=KE,+KE,+KE,+KE,-PE.

which can be written as;
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L= %[L“fnf.; + L.-r]gr‘{.:r + L-‘m ([r.\l:r + ’!l: 1"’ )]

+ %m,:&z —%Qéz + Mgl cosé,

vl L L 0, )
+ %M(x Pl éf)+-|2-m2 [@? +97)

+%[Lh!fh\r’(i:.r +Lhr1h!1;7 + Lhm(Ih.\];r + [I:.t]ﬁr)]

+%!a6?'22 cos’ 6, +121, (9,2 +8] sin? 6',)

VoY 1 (e 1 (iY@
+—1, z +=1, 2 =i —
2 \n 2 '\ 2

The above Lagrangian equation will be used
to derive the dynamic differential equation of
the system.

2.2 Modelling of the Electrical Sub-System

In the following, the Lagrangian function
derived in eq. (6) will be differentiated to
obtain the dynamic equation governing the
transients of one of the crane induction
motors. These motors are the travelling molor
“* trolley motor “¢’, and the hoisting motor
“h" and the subscript “i " will refer to one of
them. First, differentiate with respect to the
stator current, the following equation can be
obtained;

LAY
=Lt

ix

f, =y, (D

(L7

The right hand side of eq. (7) is the stator
flux. The above equalion can be differentiated
with respect to time 10 obtain the following
equation; '

d dLl . d
—_—t =V ] R —joy, = i 8
d!{d[.,J o -‘w', df{ 3 @

Regarding the rotor side, the above steps
can be repealed to obtain the following
equations;

:—Lz,{ [ +L i _=w, (9)

o LT

o

afdl_, e
d{ d]u " r

. d
- J'.(w:k - CL?' ){'(/" = {Iiuu‘ }

di

(10)

Equation (8) and eq. (10) represent the state
equation of the /ith motor, where the flux
vectors are considered as states. However, it
is convenient to use the primitive machine or
the direct-quadrature phase quantities, d-q
representation. In the following, the above
motor vector quantities are represented by its
d-q components;

WU = t}‘/md + J ufi.fg" 3
""u = Iud + j‘{ ity *
v, =V, +jV

Wrr = llurra‘ + jwqu
j:r = ![rd + j‘(]fg! (I l)
Vir = Vm." + jnyirqr

[10c] *

It is to be noted that the voltage on the rotor
is zero:ie. V, =0

Substituting the above relationships into eq.
(8) and eq. {10), the following state equations
can be written;

{l"/f.rd = _ah")y;.uf + a"l.‘k w!.\q +a21¢{m} + V.J.wd
(li./nq - _whq/r.ld - ark{f‘/uq +a2er + Va.rd
Wi = QW +{(‘);'k -, }Ww +a3.9'/nd .
(lyqu = _{wlk _a}l’ }WJ.FJ +a‘irllyl’n,‘ +a3iy)(:rﬂ'
The above equations represent the state

equations of the ith motor, and can be written
in matrix form as follows;
X =GX+V, i=rih (13)

\Vhﬁl‘ﬁ; X:" = [Wuf." Iluuq Wir Wmf ]! ( I 4)

vi=lv, v, 0 0. and
-ah w:k ab 0
- - 0 ot
G - i* I I
’ a‘h (wik _{0:) _a]t 0
_(&}:}( _0)1) adr 0 _al‘
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The dynamics of the rotor and the motor
torque are included in the following fifth
equation;

F = {a_:"}{wpmww YWy ] (15)

i

and if linearized;
a L)
(SF; - {%}[W&Jaw‘lmu - wmlu u{"‘i‘“ lX’ ( l 6)

or in vector notation;

of, = E X, i=rth (17)
2.3Modelling of the Mechanical sub-System

Lagrange's equation will be used to obtain
the differential equations associated with the
generalized coordinates. Five generalized
coordinates are  associated  with  the
mechanical  side of the compound
electromechanical  system, while twelve
coordinates are associated with the electrical
part. The details of the state equations of the
induction motors are given in section 2.2,
while the derivation of the state equations for
the mechanical side are given in the present
section. The following five equations are
associated with the mechanical generalized
coordinates;

Apii+ A0 + A0, + C o i6, +C o 06, (%)
+ Clasglgz + Clssgz2 + Cm‘g.h2 + Alséz =F,

A+ Ay, 0, + Ay 6, + Cui@, + C 08,

. . . . (19)
+C0050,0, + Czs:.gz‘2 + Czu'gnz + Ayl = F,
Ayii+ Ay + Ayl + (2:355922 @0

+ CJugl = ‘?V[g - F.*-
Agli + A, + A,,6, +‘C434!'6’, o
+ C455922 + D-u =0
Agii + AV + A0, + .08, @2)

+ CH5929| + Dssgz =-Q¢

“ »

where “4,” represents the elements of the
effective inertia matrix “4”, which can be
found in Appendix A. On the other side, the

element “C,,” represents the coefficient of

the dynamic force (centripetal or coriolis) at
coordinate i ”due to the velocities at * j " and
“&”. These elements can be obtained from
the C(g,¢), which can be found also in
Appendix A. Regarding the gravity loading
matrix D), every diagonal element "D, 7
represents the gravity loading at joint “i". All
the elements of this matrix are zero except
“D,, =Mglsing, ". The above equations can
be written as follows:

Alg)j+Clg.¢)+ Dlg)=F (23)
3. SYSTEM SIMULATION

Crane accelerations &, v and I are decided
according to the transportation plan.
Therefore, the motor inputs can be calculated
by using the nonlinear electromechanical
model. The above equations wiil be used to
simulate the response of the considered crane
for a specified transportation plan. The
proposed plan is to move the gantry with a
constant acceleration of 0.3 m/sec?, and the
trolley with a constant acceleration of 0.15
m/sec’ for ten seconds. Then, the gantry and
trolley moves with a constant velocity for
another ten seconds. Finaltly, the gantry
moves with a constant deceleration of 0.3
m/sec’, and the trolley moves with a
constant deceleration of 0.15 m/sec® for
anoth ten seconds. The proposed plan is
illustrated on Fig.2-3, and the response is
presented on Fig. 4-5. Since in practice the
suspension ropes are not wound while the
crane is in motion for saftey considerations
[4], no-hoisting of the load will be considered
in this case. 1t is clear that the sway angles
are increasing for both ¢, and @,. It can be
also noticed that the frequency of oscillation
of 8, is about 0.7 Hz, which can be predicted
from the system equation 33. From Fig.d-5,
it can be noticed that &, reaches 0.035

radians, and &, exceeds 0.26 radians, withip
30 seconds. This means that the coatianer
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load of 45 ton vibrates with an amplitude of
70 em., and rotates about its axis with an
angle of about 16 degrees, within 30 seconds.
This dangerous state indicates the necessity of
applying a control scheme to suppress the
load sway. This will be considered in the next
section. The data of the considered gantry are
presented in Table I.

4. LINEARIZED MODEL

The aim of the present work is to suppress
the load sway angles 8, and &,during the

transportation period. In order to facilitate the
analysis of the above system, and the
appiication of feedback control scheme, it is
recommended to linearize the above model
about the nominal values of the states.

The nominal values of the states can be
obtained by setting the dervitaves of the sway
angles to zero. Therefore, the nominal states,
8,, and 8,,, can be obtained as follows;

& =‘\J|(“j "";":)"{g (24)
0y =tan - (E,/v,) (25)

Therefore, the equations 18-22 of the
mechanical subsystem, after neglecting the
higher order terms and substituting for the
forces from equations 15-17, can be written
as follows;

A\ Gii + A 0T+ 4,406, + A,5,66,

L o (26)
+C1500068; + Crygled0, = 6F, = E, X,

A6 + Ayyy8 + A0, + A1y 00,

o o 7
+ CHSDIO(SQZ + Cn‘wtué‘gl = 5F:_ = EI'XI

Aol + Ay + A0 = —6F, =— E, X, (28)

Adl(’&ﬁ + A"‘ZO& + A'l‘ioaél + C43401(|§9.1
+ D086, =0
Aol + Ay + 433,60,
+ Capelod8, =04 =0

(29)

(30)

According to the assumption of small
perturbations about the nominal values, the

non-holonomic constraint; ¢ -6, cosg, =0,
associated with this system can be reduced to
be; 8¢ =86,. Therefore, equation 30 can be
rewritten as follows;

A o Gid + Ao SV + Asso‘séz + C5350f0§92 31)
+(68, =0

The crane accelerations i, v and | are
decided according te the transportation plan.
Therefore, the motor inputs can be calculated
by using the electromechanical model. Now,

the following vectors will be introduced;
Vi=[du, &v, 8 & © =86, , 80,] (32)

where the first vector ““¥” represents the
gantary motions which are decided according
to the proposed transportation plan, and the
second vector *W¥ ” represents the controlled
states of the considered system. Now the
system dynamic equation of motion can be
written as follows;

JO+DO+KO®=8Y (33)
J|©+D|®+qui=[ErXr’ E X, _E"X"‘]T
J]®+D|®+BI\¥J:FH; (34)

The parameters of the matrices can be found
in Appendix A.

5. PROPOSED CONTROL SYSTEM

The above linearized system will be used to
apply a control scheme such that the load
sway can be suppressed. The considered
system will be shown to be controllable,
before applying the control scheme.
Equations 33-34 can be reduced to the
following form;

JO+DO+KO= (35)
-BB'J,0-B5"'D O +BB;'F,
which can be rewritien as follows;

O+£0+Q O=FF,

which has the following siate space
presentation;
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X=AX+BE (36}

where;

oo Lo lpxele) o)

The above system will be controllable if the
fotlowing controllability matrix;

A =[B, AB, A’B, A’B|

has the full rank. If the matrix “A” is cyclic,
a rank “1"” feedback confroi scheme can be
applied where the two input model is reduced
to single input model. This control scheme
fixes the ratio of the two inputs to the motors
according to the following [18];

E=Z y (37)

where “Z” is a vector of constants to be
chosen such that the reduced system is
controliable from the new single input ** 7.
Now the system equation 36 can be written as
follows;

X=AX+(BZ)y (38)

The feedback control will be carried out by
assuming the control action to be;

r=-K'X (39)

where “K" is a gain vector to be chosen such
that all eigenvalues of the feedback controi
system are assigned as desired. It will be now
shown that the matrix “A” is cyclic and then
to select a vector “Z” that ensures  the
controllability of the reduced system. The
matrix “A” will be cyclic if the matrix “s/-A”,
*s” is the Laplace transform variable, has one
non-unity invariant polynomial [18). The
invariant polynomials of the of “s{-A” can be
obtained as follows;

| i=123
- 4
A= > s™ i=4 (40)
k=0

From the above equation, and the value of
the system parameters, it is clear that last
invariant  polynomial is non-unity and
consequently the matrix “A” is cyclic. The
existence of a vector “Z” which is capable to
make the reduced system equation (38)
controllable is ensured by the following
Lemma (see [18] for the proof).

Lemma: If the multi-input system described
by equation (36) is controllable and its system
matrix “A” is cyclic, then almost any vector
“Z"” will make the reduced single-input
system described by eq. (38) controllable, i.e.
the controllability matrix of this system

s, =|BZ, ABZ, A’BZ, A’BZ | @1)
has the full rank.
5.1, Selection of Feedback Gain

The characteristic polynomial of the system
without feedback can be written as follows;

strest et resve, =0 (42)

If the desired eigenvalues of the system with
feedback are assigned as 4, 4,,4,,4,, the

closed characteristic equation can be
considered as follows;

st sty ,uz;s-’ + s+ gy =0 (43)

The feedback gatn vector that yields the
desired closed loop cigenvalues can be
derived as follows [18];

K={&,]"T"(u-¢) (44)

where I" is lower triangular Teoplitz matrix
with the first column [l,al,gz,s,]r; A, s

¥

the controllability matrix defined in eq. (41),
and the vectors g and ¢ are defined as

follows;

fu:[t“nﬂz-ﬂaaﬂi]r and “:=[5|v“52"9:w54]T

The above results have been implemented to
suppress the sway of the load. The poles of
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the closed loop are placed at “-0.25+ j0.75”
and at “—4+ j8", for the first ten seconds
and the last ten seconds. Regarding the
second ten seconds, the poles are placed as
“0.25+ j0.75". Fig. 6 shows the block
diagram of the control scheme. Simulations
have been carried out to test the performance
of the feedback control scheme as applied to
the considered gantry crane, The results are
presented in Fig. 7. It is clear that the sway
angle 86, now exhibits a decaying vibration
charateristics and a maximum sway angle
now 0f 0.0025 rad has been obtained and zero
sway will be obtained. Regarding Lhe sway
angle &8, , it is sufficient to force 46, 1o zero
to suppress the sway of the contianer.

CONCLUSIONS

A nonlinear dynamical model of the
electromechanical system of gantry crane has
been developed to represent the load sway
dynamics, using the Lagrangian approach.
This dynamical modei considers the induced
sway of the suspended load due to the
stmultaneous motions of the gantry, trolley
and the hoisting of the load. The dynamics of
the induction motors are also taken into
consideration in addition to the afromentioned
motions. The considered sway is induced not
only in the plane of motion, but also in the
plane determined by the ropes and the vertical
axis through the suspension point.

The derived model is adopted to simulate the
response of an actual gantry crane. The data
of 2 45-ton gantry crane is used to simulate
the behavior of the container under an actual
transportation plan. A simulation example is
then presented 1o illustrate the uncontrolled
system response. The container sway is found
to be high such that a control scheme has to
be implemented to suppress the load sway.

A feedback control scheme is developed 1o
suppress load sway. The torques of the
driving crane motors are adjusted by feeding
back the sway angles and their derivatives.
The feedback control matrix is chosen such
that the poles of the closed-loop system are
arbitrary assigned. The control scheme is
applied and the simulation results illustrate
the effectiveness of the proposed scheme.
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Fig 1. a) Actual pantry crane at Shuwaikh port in Kuwail, b) Free body diagram lor gantry ¢rane

Tablc 1. Data of the Considered Crane.

m,=1000000 kg., 7,=10000 kg, M =45000kg, f =40000kg m’, [_=50000kg m’, [=20m. Q=150

N.m/rad, The data of the motors can be found in [19).
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NOMENCLATURE

A system effective inertia matrix,

A,y Az, Ay system submatrices,

B sygtem matrix,

8;,B; system submatrices,

by, bz, by, ba aystem vectors,

¢: subscript denctes the container coordinate

{Czi.
d

E,

E

Ey

F,,F, plane forces acting on the girder and trolley{N],

{Crz] saystem damping matrices,

2007.

M. 68

subscript denotes the direct coordinate in the d-g system of coordinates,

vector includes the 1th motor steady state flux,

matrix maps the motor effect te the mechanical part,

matrix represants the motors effect,

Fy rope tension force (H],

g gravitational acceleration [m/sec?),

G, Gy, Gty Gn, Gn, G system matrices,

b subscript denotes the hoisting,

I., Ia mass moment of inertia of the cbject in the axial
directions, [kg.m?),

I,, I, and I, mass moment of Inertia of the girder motor,

T, = M 2 + I,

hoisting motor respectivaly [(Kg.w?],

aquivalent mass moment of inertia,

and transverse

trolley motor and

I,. ., T4, I, 4, &tC. currents, and subscripts are defined as their
locations [Amp.],

j j = (_1105'

{Kz], [K;;] system matrices,

t distance from the upper point of the unwound part of the repe te the mass
canter of the leoad,

a subscript,

M suspended object mass [Kgl,

M, =M+ m + m + (I,/1,%) egquivalent mass [Kgl,

M, =M+ m + (I:/25%) equivalent mass [Kg),

M, = M + (I;/ry¥) equivalent mass [Kgl,

my, and m, girder and trolley masses respectively (Xg],

(M:], [My;], [z} system mass matrices,

m: subscript dencotes the mechanical aystem
Q:siffness of the wire ropelN.m/rad]

ESY
Iz
Ty
r

Ru

E

(1]

radius of girdear motor pinion (m],
radius of trolley motor pinon [m],
radius of drum [m],

subscript denotesgs the rotor,

rasistance, the subscripts are to checked [Chm],

subscript denotes the stator,
transformation matrix,
time [sac], .
subscript denotes the trolley,
vactor denctes the input to the main system,
vector denotes the input the ith subsystenm,
voltages on the ith stator [Volt],
crana coordination,
x- coordinate of the rope end [m],
vactor deanctes the states of the ith motor,
system vector,
y- coordinate of rope end [m],
aystem vector,
z- coorxrdinate of rops end [(m],
z- coordinate of the object [m],
vector denotes the state of the hole system,

vector denotes the atate of the mechanical part,
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o scalar dummy variable,

X i o X, X3, oy scalar dummy variables for flux,

i) dummy variable for equations 34-35,

Ay ith eigenvalue,

{; ith eignvector,

Vim, ¥ij vectors representing parts of the ith eigenvaector,
e, v sway and rotatienal angles respectively (Fig.1),

¥, : stator flux

¥ ir  rotor flux

® twist angle of the rope,

P torsional stiffness of the repe.

APPENDIX A SYSTEM MATRICES

[ M, 0 M6,sin6, Mising, Mig,cosd, |
0 M, MO, cos6, Micos@, -MlO,sing,
Alg)=| M6,sind, M8, cos6, M, 0 0
Mising, Micos@, 0 1o 0
| M6, cos8, - MI,sing, 0 0 Iy ]
[ 206,6,c0s0, + 206, 5in, + 26,6, cosd, ~16,%6, 5in6, - 16,6, 5in 8, |
~206,6,5in8, + 218, cosh, - 216,0, sin, - 16,9, cos8, — 16,28, cos,
Clg.4)=M 16,%, +9|sz
21i6, + 16,8,
i 216,07 +{(2m1* 21, + 21, ) M B,6,6, ]

J:[f,,, 0] Dz[zmo 0 } Kz[Mgzo 0]
0 1, 0 2Mi O} 0 0

B Mi,sin@,, Mijcos8,, 0
| MI,0,,c056,, - M6, sin8,, 0
M, 0 M8, sinb,,
B| = 0 Mu M6I0 Cosgm f
M6, 5in8,, MO, cos8,, M,

F; =[ErXr’ E,/Yp _EhX”]

Ml sing,, M 0, cosby IMi,sin8,,  2Mi 8, cosb,,
J, =| Ml cos8y,y - M8, sinty, |, D, ={2Mi,cos8,, -2Mi 8, sin6,,
0 0 0 0





