α, β - UNSATURATED NITRILES IN HETEROCYCLIC SYNTHESIS : SYNTHESIS OF CYCLOHEXENO[b]PYRANS AND CYCLOHEXENO[b] PYRANO [2,3-b] PYRIDINES.

Abdel Moncim $\mathcal{E l}$ - Torgoman
Chemistry Department, Facultyl of Science, Menofia University, Shebien El-Koum, Egypt.

Abstract

The reaction of 5, 5'- dimethylcyclohexan-1,3-dione (1) with cinnamonitriles (2) afforded Cyclohexeno [b] pyrans (5). The structure of reaction products was established based on ${ }^{1_{H} N M R}$ and ${ }^{13} C$ NMR. The ${ }^{1} H$ NMR revealed heteroring at $C-4$ affecting the $\mathrm{CH}_{2} \mathrm{CO}$ moiety in space making CH_{2} protons magnetically nonequivalent. Replacement of the heteroring by an aryl moiety results in disappearance of this effect.

The reaction of (5) with (2) resulted in formation of cyclohexeno [b]-pyrano [2,3 - b] pyridines whose structre was established based also on spectral data .
$\alpha, \mathrm{B}-$ Unsaturated nitriles are verisitile reagents that have been extensively employed in heterocyclic synthesis. ${ }^{1-4}$ Recently several new approaches for the synthesis of polyfunctional substituted mono and condensed heteroaromatics utilizing α, β-unsaturated nitriles have been reported. ${ }^{5-7}$ Elnagdi et al. ${ }^{8}$ and Soto et al ${ }^{9}$ have reported that the reaction of β-diketones with cinnamonitriles yields enamenopyran derivatives. This approach has been extensively utilized for the synthesis of substituted pyrans. Although cyclohexenopyrans are interesting as

Abdel Moneim El-Torgoman.

potential startings for the synthesis of certain mail fertility regulators, only very few derivatives of this ring system have been reported. Elnagdi et al. ${ }^{10,11}$ reported that $5,5^{\circ}$-dimethyl cyclohexanedione (1) reacts with benzylidenemalononitrile yielding pyrans. This reported synthesis coupled with the interest in the chemistry of these important heterocycles, led the author to report the synthesis of several new cyclohexenopyrans. The conversion of these compounds into the corresponding pyranopyridines is also studied.

RESULTS AND DISCUSION

Several interesting features of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of the synthesized compounds are discussed. Thus it has been found that 5, 5'- dimethyl cyclohexanedione (1) reacts with ($2 \mathrm{a}, \mathrm{b}$) to yield $1: 1$ adducts. These may be formulated as either the Michael adducts 3 or 4 or isomeric cyclic 5 or 6 (cf. Chart 1). ${ }^{1} \mathrm{H}$ NMR of product of reacting. $2 a$ with 1 revealed two singlets for the CH_{3} groups at $\delta 0.99$ and $\delta 1.04 \mathrm{ppm}$; four doublets at $\delta 2.3$, and 2.5 ppm ; a one proton signal at $\delta 4.33 \mathrm{ppm}$ in addition to the three furan protons at $\delta 6.05(\mathrm{H}-3$), $6.32(\mathrm{H}-4)$ and $7.47(\mathrm{H}-5) . \mathrm{A}_{2} \mathrm{O}$ exchangeable two proton signal at $\delta 7.05$ ppm also appeared and was then interpretted for NH_{2} group. This spectra clearly indicate that the reaction product is neither the acyclic Michael adduct 3 or 4 as for both a multiplet for protons linked to Sp^{3} carbons should have appeared at $\delta 2-3$ ppm. However although the ${ }^{1} \mathrm{H}$ NMR may be interpretted better for 5 than for form 6 as the methylene protons of the CH_{2} flanked by $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}-\mathrm{O}$ functions in 6 should appear at lower field.

A further proof for this conclusion seems manditory. Conclusive evidence for this structure was thus obtained through ${ }^{13} \mathrm{C}$ NMR spectroscopy (cf. formula

$\alpha \beta$ - Unsaturated nitriles.

5 a), which showed six signals for sp 3 . These were interpretted for: $(\mathrm{C}-8) \delta$ 26.44; (C-9) 28.27; (C - 10) 28.88; (C - 6) 31.65; (C - 7) 49.79 and (C - 4) 55.38. If this product was isomeric 6 a, one would expect ($\mathrm{C}-8$) to appear at much lower field. This combined with observation from ${ }^{1} \mathrm{H}$ NMR that pyran H appeared as singlet - it shoud appear as multiplet by long range coupling with CH_{2} in isomeric 6 a - no doubt is left thus for structure interpretation of reaction products.

Interesting features of ${ }^{13} \mathrm{C}$ NMR worth mention here. Namely the appearance of $\mathrm{C}-3$ at $\delta 104 \mathrm{ppm}$ higher than expected for olefinic carbon. This is in my openion may be due to both electron donation by NH_{2}, as well as, shielding by CN function. similarly, the reaction of 2 b with 1 affords $\mathbf{5 b}$.

Compounds $5 \mathrm{a}, \mathrm{b}$ and 11 reacted with the acrylonitriles $2 \mathrm{a}, \mathrm{b}$ in refluxing pyridine to yield 1:1 adducts. Three isomeric structures seemed possible for these products (cf. structures 7-9).

Structure 7 was readily eliminated as ${ }^{1} H$ NMR in each case revealed that the methylene groups was not involved in the reaction. Structure 9 , rather than 8 could be established based on ${ }^{1} \mathrm{H}$ NMR which revealed the pyridine $\mathrm{H}-2$ as singlet. if this product was isomeric 8 , this proton should appear as a doublet. ${ }^{13} \mathrm{C}$ NMR supports further this conclusion (cf. formula 9 b). Thus, the two carbons and the two methylene carbons appeared at almost the same field as in the parent compound. Two new Sp^{3} carbons appeared at $\delta 31.50$ for pyridine $\mathrm{C}-3$ and at $\delta 58.05$ for pyridine $\mathrm{C}-2$. Also two new higher field signals appeared at almost the same field as in parents (cf. formula 9b). ${ }^{13} \mathrm{C}$ NMR revealed extra carbons for $\mathrm{C}=\mathrm{O}$ and for CH 2 . This is due to existence of stereoisomers whose rate of interconversion is seemingly slower than the rate of relaxation of ${ }^{13} \mathrm{C}$ NMR assessment. The formation of pyranopyridines by this way seems to be the first reported example of such addition in condensed pyran systems.
（1）＋154J
$c=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{m}$
$\mathrm{d}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OC} \mathrm{H}_{3}-$

＋

'я я
Jyouts. Jyngidts $S=6 \underline{e}$
jpneints : Jyquis $=0$

(S) +78 (J)

Abdel Moneim El-Torgoman.

5b
$\alpha \beta-$ Unsaturated nitriles. \qquad

9a

9b

95

Abdel Moneim El-Torgoman.

10

11
$\alpha \beta-\quad$ Unsaturated nitriles............

Abdel Moneim El-Torgoman.

$\alpha \beta$ - Unsaturated nitriles............

Abdel Moneim El-Torgoman.

$\alpha \beta-$ Unsaturated nitriles............

Abdel Moneim El-Torgoman.

$\alpha \beta-$ Unsaturated nitriles............

Abdel Moneim El-Torgoman.

- Although Elnagdi et al. 10 have previously reported addition of arylidine malononitrile to dimedone, the reaction of $2 c$ has not ben reported and no ${ }^{13} \mathrm{C}$ NMR date have ever been reported for these systems. I have found that 2 c also adds to 1 to yield the cyclohexenopyran 10 . Structur of 10 was inferred from ${ }^{13} \mathrm{C}$ NMR spectroscopy. Unexpectidly ${ }^{1} \mathrm{H}$ NMR revealed one of the two methylenes as doublet of doublet while the other one appeared as clear singlet in contrast to observed multiplicity of both CH_{2} signals in 5 a , b. It's believed that this can be rationalised by assuming that the CH_{2} protons adjacent to $\mathrm{C}=\mathrm{O}$ are in this derivative equivalent while the lone pair anisortopy of the hetero ring in $5 \mathrm{a}, \mathrm{b}$ renders these two protons differni as it affects one of the two protons in the conformation that places the heteroatom over this proton.

In order to confirm this, cyclohexenopyrane 11, was prepared readily following the procedure of Elnagdi et al. ${ }^{10}$, and its spectra was recorded and inspected. ${ }^{13} \mathrm{C}$ NMR is in accordance with the structure proposed by Elnagdi et al. ${ }^{10}$ (cf. formula 11). ${ }^{1} \mathrm{H}$ NMR again revealed one of the CH_{2} as singlet and the other as doublet of doublet giving further support for proposed effect of the heteroatom lone pair.

EXPERIMENTAL

Melting points were determined on a Buchi apparatus and uncorrected. Elementai analysis were carried out at Microaniytical Unit, Cairo University. ${ }^{13} \mathrm{C}$ NMR and ${ }^{1}$ H NMR were determined on a Bruker AC 250 FT - NMR spectrometer using tetrramethylsilane as the internal standard; chemical shifts are recorded in parts per million., at chemistry Department, Odense University, Odense M, Danmark.
\qquad

4H-Cyclohexeno [1, 2-b] pyran[5a]:

To a solution of 1.4 g . (10 mmol) of 5,5 -dimethyl cyclohexanedione (1) in 40 ml ethanol was added $1.44 \mathrm{~g}(10 \mathrm{mmol})$ of furfurylidene malononitrile (2 a) and 3 drops of triethylamine. The reaction mixture was then heated under reflux for three hr . The solid product (5a) on standing precipitated, collected by filtration and recrystallized from ethanol as pale yellow crystals, M. P. 218-219 ${ }^{\circ} \mathrm{C}$.

Using this procedure, compound. $5 b$ was obtained via the reaction of equimolar amounts (10 mmol) of (1) and (2b).

4-H cyclohexeno [b] pyran [2,3-b] byridine [9a]:

To a solution of $3.0 \mathrm{~g}(10 \mathrm{mmol})$ of (5 b) in 50 ml pyridine, 1.44 g (10 mmol) of (2a) was added. The reaction mixture was then heated under reflux for six hrs. The solvent was evaporated under vacuo and the solid product formed was dissolved in 50 ml water, acidified with $\mathrm{HC1}$, filtered washed with water several times and finally recrysallized from ethanol as grey crystals, M.p. $205^{\circ} \mathrm{C}$.

Using this procedure, (9 b) was obtained via the reaction of equimoiar amounts (10 mmol) of (5a) and (2b) whil (9c) was obtained from (11) and (2a).

ACKNOWLEDGEMENT

Thanks for prof. Erik B. Pedersen, Odense University for the ${ }^{1}$ H NMR and ${ }^{13}$ C NMR spectra and laboratory facilities provided.

Abdel Moneim El-Torgoman.

Table (2): ${ }^{1} \mathrm{H}$ NMR data of the synthesized compounds

Compound Number	${ }^{1} \mathrm{H}$ NMR, ppm (DMSO)
5a	$\delta 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H} \mathrm{CH}_{3}\right), 2.3\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.50\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}\right), 4.33(\mathrm{~s}, 1 \mathrm{H}$, pyran H$), 6.05(\mathrm{~d}, 1 \mathrm{H}$ furan $\mathrm{H}-3), 6.32(\mathrm{~d}, 1 \mathrm{H}$, furan furan $\mathrm{H}-4), 7.05\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$ and $7.47(\mathrm{~d}$, 1 H , furan $\mathrm{H}-5$).
5b	$\delta 0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.55(\mathrm{dd}$ $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}\right), 4.54(\mathrm{~s}, 1 \mathrm{H}$, pyran H$), 6.86(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-3)$, $6.90(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-4), 7.07\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$ and $7.30(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-5$).
10	$\begin{aligned} & \delta 0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.52 \\ & \left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}\right), 4.23(\mathrm{~s}, 1 \mathrm{H}, \text { pyran } \mathrm{H}), 7.07\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \text { and } 7.11 \\ & -7.36(\mathrm{~m}, 4 \mathrm{H}, \text { arom. } \mathrm{H}) . \end{aligned}$
11	$\begin{aligned} & \delta 0.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{~s}, 3 \mathrm{H} \mathrm{CH}_{3}\right), 2.15\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.49(\mathrm{~s}, \\ & \left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.14(\mathrm{~s}, 1 \mathrm{H}, \text { pyran } \mathrm{H}), 6.85(\mathrm{~d}, \\ & 2 \mathrm{H} \text {, ortho protons), } 7.05\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \text { and } 7.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~m} \text { protons }) \text {. } \end{aligned}$
9a	$\delta 0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.47$ (dd, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}$), 4.33 (s, 1 H , pyran 4 H), $4.54(\mathrm{~s}, 1 \mathrm{H}$, pyridine 2 H$), 6.05$ (d, 1H, furan H-3), 6.32 (d, 1 H , furan $\mathrm{H}-4$) 6.87 (d, 1H, thiophene $\mathrm{H}-3$), 6.91 (d, 1 H , thiophene $\mathrm{H}-4$) 7.07 (br, 2H, NH_{2}), 7.31 (d. 1 H thiophene $\mathrm{H}-2$) and 7.47 (d, 1 H , furan $\mathrm{H}-5$).
9 b	$\delta 0,98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25\left(\mathrm{dd}, 2 \mathrm{H} \mathrm{CH}_{2}\right), 2.47(\mathrm{dd}$ $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}\right), 4.34(\mathrm{~s}, 1 \mathrm{H}$, pyran $4-\mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}$, pyridine $2-\mathrm{H})$ $6.05(\mathrm{~d}, 1 \mathrm{H}$, furan $\mathrm{H}-3), 6.30(\mathrm{~d}, 1 \mathrm{H}$, furan $\mathrm{H}-4), 6.80(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-3$), $6.86(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-4), 7.07\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, $7.28(\mathrm{~d}, 1 \mathrm{H}$, thiophene $\mathrm{H}-2)$ and $7.47(\mathrm{~d}, 1 \mathrm{H}$, furan -5).
9 C	$\delta 0.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.48$ (dd, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}$), $3.33\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyran $4-\mathrm{H}$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.13(\mathrm{~s}, 1 \mathrm{H}$, pyridine $2-\mathrm{H}), 6.06(\mathrm{~d}, 1 \mathrm{H}$, furan $\mathrm{H}-3$) , 6.32 (d, 1 H , furan $\mathrm{H}-4$), 6.84 (d, arom. O. protons), 6.93 ($\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}$) and 7.05 (d , arom. p-protons).

Abdel Moneim El-Torgoman.

Table (3): ${ }^{13}$ C NMR data of the synthesized compounds

Compound Number	${ }^{13} \mathrm{C}$ NMR, ppm (DMSO)
5a	
5b	$\delta 26.27$ ($\mathrm{C}-9$) , 28.36 ($\mathrm{C}-10$), $30.20(\mathrm{C}-8), 31.46(\mathrm{C}-6), 49.68$ (C-7), $57.96(\mathrm{C}-4), 112.75(\mathrm{C}-3), 119.27$ (C-11), 123.72 (C-13), 124.10 (C-14), 126.52 (С-15), 139.50 (C-12), 149.00 (C-4a), 158.70 (C-8a), 162.20 (C2) and 195.20 (C5).
10	
11	$\begin{aligned} & 826.67(C-9), 28.27(C-10), 31.61(\mathrm{C}-8), 34.66(\mathrm{C}-6), 49.93 \\ & (\mathrm{C}-7), 54.87(\mathrm{C}-18), 58.60(\mathrm{C}-4), 112.94(\mathrm{C}-3), 113.56(\mathrm{C}-14), \\ & 119.61(\mathrm{C}-11), 128.09(\mathrm{C}-13), 136.71(\mathrm{C}-15), 157.82(\mathrm{C}-12), \\ & 158.32(\mathrm{C}-8 \mathrm{a}), 161.97(\mathrm{C}-2), 195.46(\mathrm{C}-5) . \end{aligned}$
9a	$\begin{aligned} & \delta 26.37(\mathrm{C}-20), 26.45(\mathrm{C}-19), 28.28(\mathrm{C}-8), 30.31(\mathrm{C}-6), \\ & 31.58(\mathrm{C}-3), 49.79(\mathrm{C}-7), 55.39(\mathrm{C}-9), 58.06(\mathrm{C}-2), 104.91 \\ & (\mathrm{C}-13), 110.29(\mathrm{C}-12), 112.86(\mathrm{C}-21), 119.38(\mathrm{C}-22), 123.84 \\ & (\mathrm{C}-17), 124.22(\mathrm{C}-16), 126.63(\mathrm{C}-18), 141.57(\mathrm{C}-15), 149.11 \\ & (\mathrm{C}-9 \mathrm{a}), 155.62(\mathrm{C}-11), 158.81(\mathrm{C}-4 \mathrm{a}), 159.18(\mathrm{C}-8 \mathrm{a}), 162.31 \\ & (\mathrm{C}-4), 163.07(\mathrm{C}-10 \mathrm{a}) \text { and } 195.31(\mathrm{C}-5) . \end{aligned}$
9 b	$\begin{aligned} & \delta 26.38(\mathrm{C}-20), 26.45(\mathrm{C}-19), 28.28(\mathrm{C}-8), 30.30(\mathrm{C}-6), \\ & 31.58(\mathrm{C}-3), 49.79(\mathrm{C}-7), 55.38(\mathrm{C}-9), 58.05(\mathrm{C}-2), 104.91 \\ & (\mathrm{C}-17), 110.29(\mathrm{C}-16), 112.85(\mathrm{C}-21), 119.35(\mathrm{C}-13), 119.39 \\ & (\mathrm{C}-22), 123.84(\mathrm{C}-12), 124.63(\mathrm{C}-14), 126.63(\mathrm{C}-11), 141.57 \\ & (\mathrm{C}-15), 149.11(\mathrm{C}-18), 155.62(\mathrm{C}-8 \mathrm{a}), 158.81(\mathrm{C}-4), 159.19 \\ & (\mathrm{C}-10 \mathrm{a}), 162.32(\mathrm{C}-4), 163.08(\mathrm{C}-9 \mathrm{a}), \text { and } 195.31(\mathrm{C}-5) . \end{aligned}$
9 c	$\begin{aligned} & \delta 26.44(C-23), 26.66(C-22), 28.25(C-8), 31.60(C-6), \\ & 34.64(C-3), 49.80(C-7), 54.86(C-9), 55.40(C-21), 85.57 \\ & (C-2), 104.90(C-13), 110.28(C-12), 112.92(C-24), 113.54 \\ & (C-25), 114.63(\mathrm{C}-17), 115.07(\mathrm{C}-9 a), 119.35(\mathrm{C}-14), 128.07 \\ & (\mathrm{C}-16), 133.22(\mathrm{C}-15), 136.70(\mathrm{C}-18), 141.55(\mathrm{C}-11), 157.80 \\ & (\mathrm{C}-8 \mathrm{a}), 158.30(\mathrm{C}-4), \text { and } 161.94(\mathrm{C}-10 \mathrm{a}) \text { and } 195.43(\mathrm{C}-5) . \end{aligned}$

$\alpha \beta=$ Unsaturated nitriles.

REFERENCES

1 - A.M. El-Torgoman, S.M. El-Kousy and Z.E. Kandeel, Z. Naturforsch ., 42b, 107 (1987).

2 - Z.E. Kandeel, F. M. Abdelrazek, M. H. Elnagdi and A.M. El - Torgoman, Heterocycles, 24, No. 9, 2455 (1986).

3 - S. El - Kousy, I. El - Sakka , A.M. El-Torgoman, H. Roshdy and M.H. Elnagdi, Collect. Czech. Chem. Commun. 55, 2977 (1990).

4-S. El-Kousy, A.M El-Torgoman, M. R. Abdel Azim and H. A El-Fahham, Egypt.J. Pharm. Sci. 32, No. 3-4, 851 (1991).

5 - M.H. Elnagdi, S.A.S. Ghozlan, F.M. Abdelrazek and M.A. Selim, J. Chem.Res. (M), 1010 (1991).

6 - G.E.H. Elgemei, H.A. Elfahham, Y.R. Ibraheim and M.H. Elnagdi, Arch. Pharm. (weinheim) 322, 535 (1989).

7 - M.A. Sofan,F.M. El-Taweel, A.G.A. Elagamey and M.H. Elnagdi, Leibigs Ann. Chem., 935 (1989).

8 - M. H. Elnagdi, R. M. Abdel - Motaleb, M. Mustafa, M. F. Zayed and E.M. Kamer, j. Heterocyclic Chem., 241677 (1987).

9 - N. Martin, C. Seoane, J.L. Soto, Tetrahedron 44, 5861, (1988).

10 - M. H. Elnagdi, F.A.M.A. Aal and Y.M. Yassin, J. prak. chem., 331, 971 (1989).

11 - S. E Zayed, E.I.A.Elmagid, S.A. Metwally and M.H. Elnagdi, Collec. Czech. Chem. Commun., 56, 2175, (1991).

Abdel Moneim El-Torgoman.

$$
\begin{gathered}
\text { النيتريلات غُير المشبعه } \alpha, \beta \text { هى مجال تخليق المركبات غير هتجانسة الحلةه }
\end{gathered}
$$

قد تم تحضير مركبات الهكسين الحلقى (ب) بيران (0) من تغاعل
 إثبات التركيب الجزيئى للبركبات الناتجه إستنادا الى أطياف الرنين النووى المغناطبسى لها.

كذلك قد تم تحضير. مركبات الهكسين الحلقى (ب) (ب) - بيرانو

الجزيئى لها إستنادا اللى :راسة أطياف الرنين النووى المغناطيسى لها.

