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ABSTRACT 

The nonlinear Burgers' equation is solved numerically by a method based on 
collocation of quintic splines over finite elements. A linear stability analysis 
is set up which shows that the scheme is unconditionally stable. Three standard 
problems are used to test the algorithm. All have analytic solutions so that the 
L - and Lm-error norms can be used to estimate the accuracy of the numerical 

2 
method. For the problems studied there are also published numerical solutions, 
so that further comparisons can be made. The method is found to be both accurate 
and efficient. 

INTRODUCTION 

Burgers' equation arises in the approximate theory of flow through a shock 

wave propagating in a viscous fluid (Cole) and in the modeling of turbulence 

(Burgers). Burgers' equation and Navier-Stokes equation are similar in the form 

of their nonlinear terms and in the occurrence of higher order derivatives with 

small coefficients in both (Varoglu et al.). 

Burgers' equation can only be solved analytically for a restricted set of 

initial conditions. Difficulties also arise in the numerical solution of 

Burgers' equation for small values of the viscosity coefficient, that is large 

Reynolds number, which corresponds to steep wave fronts. Recently, Galerkin and 

Petrov-Galerkin finite element methods, involving a time dependent grid, have 

been used successfully to obtain accurate numerical solutions (Cadwell et al. 

and Herbst et al.) even for small viscosity coefficients. 
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In this paper we set up a finite element approach using a collocation 

method with quintic spline interpolation functions and a constant grid of 

elements and test its usefulness when the viscosity coefficient is both large or 

small. The collocation method has two great advantages, in that the set up 

procedure does not involve integrations, and that the resulting matrix equation 

is banded with a small band width. Quintic splines have the additional advantage 

that the resulting matrix system is pentadiagonal and so can be solved using the 

pentadiagonal algorithm. In the method described here a single (N+I)X(N+I) 

pentadiagonal matrix equation is obtained. A similar approach has been reported 

recently (Cadwell) which replaces the partial differential equation by a set of 

3 independent tridiagonal NXN matrix equations for nodal values of function and 

derivatives. Cubic splines have also been used by Rubin and Graves. 

THE GOVERNING EQUATION AND FINITE ELEMENT SOLUTION 

An appropriate form for Burgers' equation is 

Ut + U U x  - v U x x  = O  a s x b  (1) 

where the subscripts t and x denote the differentiation and v is positive 

parameter. Boundary conditions are chosen from: 

U(a.,t) = a and U(b,t) = P, 
The region is partitioned into N finite elements of equal length h by the 

knots x. such that a = x,, < xl < < x = b. The quintic splines 6, with 
1 N 1 

knots at x, form a complete basis for the functions defined over [a,b]. A global 
1 

approximation U (x,t) to the solution U(x,t) is given by 
N 

N+7_ 

uN(x3t) = 1 y )  $,(x) (2) 

i=-2 

where the 6. are time dependent quantities to be determined from thc 
1 

boundary and collocation conditions. Each quintic spline spans 5 finite 
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elements, so that 5 splines cover each element. The spline $.(x) and its 2 
I 

principal derivatives vanish outside the region [xi-, ,xi+,]. In Table I the 

values of +, aiid its principal derivatives at the relevant knots are listed. At 
1 

the knots x. the numerical solution U (x,t) is given by 
N 

The function TJ and its first 2 derivatives are continuous across element 

boundaries. We substitute (2) into (I), and identify the collocation points with 

the knots and then use equation (3) to evaluate U, and its space derivative 
1 

(Prenter) . 

Table I :The quintic spline $ 

Thus implementing the method of lines leads to a set of ordinary 

differential equations with the form 

where 

Z. = 6i-2 + 266,, + 666, + 266i+l + 6j+2 
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The system of ordinary differential equations may now be solved using an 

appropriate software package, for example, by using the routine DO2CAF of the 

Numerical Algorithms Group program library. 

In an alternative approach, which is used in this paper, a recurrence 

relationship based on a Crank-Nicolson approximation in time is derived. Suppose 

T 
that d = (6-2, 6-1, 60, ..., SN+2) , the vector of nodal parameters, is linearly 

interpolated between two time levels n and n+l then d and its time derivative 

are given by 

1 n+l n 1 n+I 
d = -(d + d ) ,  d =--(d - d) 

2 A L 

where dn are the parameters at the time a t .  Hence using Eq.(5) in Eq.(4), 

we have for each knot an equation relating parameters at adjacent time levels, 

n i l  n 

6i to tii (Ali and Gardner et al.), 

where 

a = 1-R Z -R 
1 i 2' 

a = 26-1OR Z.-2R2, 
il i2 1 1  

ai3 = 66+6R2 , a = 26+10R Z,-2R a = l+RIZi-R2. 
i4 1 1  2 ' s  

Pil = l+RIZi+R,, - P 22 = 26+10R1Zi+2R2, 

The system (6) consists of N+l nonlinear equations in N+5 unknowns (6-2, 

T 
6-1, 60 , ..., h+2) . TO obtain a solution to this system we need 4 additional 

constraints. These are obtained from the boundary conditions, and can be used to 
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eliminate 6-2, 6_1, h,,, h+2 from the set (6) which then becomes a matrix 

T 
equation for the N+l unknowns dnfl = (aO, 4, q, .... &) . 

n n 
where A(d ) and B(d ) are pentadiagonal matrices, and r is a N+l vector 

which depends on the boundary conditions. 

The time evolution of the approximate solution U (x,t) is determined' by the 
N 

time evolution of the vector dn. This is found by repeatedly solving the 
0 

recurrence relationship once the initial vector d has been computed from the 

initial conditions. The recurrence relationship (7) is pentadiagonal and a 

direct algorithm for the rapid solution of the equations is available. However, 

an inner iteration is also needed, at each time step, to cope with the nonlinear 

terms. Tne following solution procedure is followed. 

1. At time t = 0, for the initial step of the inner iteration we 
* * 0 

approximate A and B by A and B calculated from d only and obtain a first 
1 

approximation to c! fmrr, (?). We :hen iterate, using (7) with matrices A and 3 
0 1 1 calculated from d = 0S(d + d ) to refine the approximation to d . 

2. At all cther time steps we use for matrices A and B, at the first step 

of the inner iteration, A* and B* derived from d* = 0.5(dn + 8 ' )  to 

obtain a first approximation to dntl by solving (7). We hen iterate, using (7) 

with matrices A and B calculated from d = 0.5(dn + dn+l), two or three times to 

refine the approximation to dn+l. 

STABILRY ANALYSIS 

An investigation into the stability of the numerical scheme (6) is based on 

the von Neumann theory in which ?he growth factor of a typical of Fourier mode 

defined as 
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where, k is the mode number and h is the element size, is determined for a 

linearisation of the numerical scheme. 

The nonlinear term UU, of Burgers' equation (Ali and Gardner et al.) is 

linearised by making the quantity U locally constant which is equivalent to 
n 

assuming that the corresponding values of 6j are equal to a local constant d. 

Substituting the Fourier mode (8) in equation (5) we obtain 

where the growth factor g has the form 

where 

a = (1 - R2) cos(2kh) + (26 + 2R2)cos(kh) + 66 + 6Rz 

al= (1 + R2) cos(2hk) + (26 - 2R2)cos@) + 66 - 6R2, 

* * 300dA3 
b = R1( sin(2k.h) + 10 sinfkh)), RI = (?l , 

10AN R =-  
2 h2 

Taking the modulus of Eq.(9) gives 1 g I < 1; therefore the linearised scheme 

is u~conditionally stable. 

THE INITIAL STATE 

From the initial condition U(x,O) on the function U(x,t) we must determine 
0 

the initial vector d so that the time evolution of d, using (7), can be 

started. 

Firstly rewrite Eq.(2) for the initial condition as 
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0 
where tij are unknown parameters to be determined. To do this we require 

UN(x,O) to satisfy the following constraints: 

(a) It must agree with the initial condition U(x,O) at the knots xj, 

j=O,l,,,., N. 

(b) The first and the second derivatives of the approximate initial 

condition shall agree with those of the exact initial condition at both ends of 

the range; Eq.(3) produces two further equations. 
0 

The initial vector d is then determined as the solution of a matrix 

equation derived from Eq.(3) 
0 Md = b  (1 1) 

THE TEST PROBLEMS 

We now obtain the numerical solutions of Burgers' equation for two standard 

problems. To measure the accuracy of the numerical methods we compute the 

difference between the analytic and numerical solutions at each mesh point after 

specified time steps, md use these to compute the discrete L - and Lw- error 
2 

norms. 

(a) Consider the well known analytic solution of Burger's equation: 

u(xtt) = 
x l t  , t r l  (12) 

1 + exp(x2/4vt: 

where t = exp(l/8v). We take initial condition to be the Eq.(12) evaluated 
0 

at time t = 1, and use the boundary conditions u(a,t) = u(b,t) = 0. 

To test the accuracy of the numerical scheme we have calculated the L - and 
2 

Lw- error norms for problem (a). These are given in Tabie 2 and 3. In Table 2, 

we compare between two methods for solutions of Burgers' equation. From Table 2 

with v = 0.005 we see that the calculated errors of the previous scheme 
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(Gardner et al.) is smaller than the present scheme. 

Table (2) 

Table (3) 

Table 3 shows us that for v = 0.0005 the evaluated errors for this problem 

using the present scheme is smaller than the previous scheme (Gardner et al.), 

i.e in the case with small value of v (a big Reynold's number) the present 

method is a best fit for solving the Burger's equation. 

T i m e  

L ~ X  103 

3.25 
1 

0.108 1 
1.75 2.5 

/ Gardner 0.567 

5.868 

5.880 
L X 10' 

m 

Present 

- 

Present  

Gardner 

0.536 0.180 I 
0 . 1 1  1 0.239 I 

1.582 

2.705 

0.728 

2.291 1 
i 



Ahmed H. A. Ali 

it is noticed that as the viscosity value v decreases the errors increase 

but remain acceptable small. 

(b) A second analytic solution is of Burgers' equation (Rubin et al.) 

We take as initial condition (13) at t = 0 over the range 0 5 x 5 30 with 

boundary conditions u(0,t) = u(1,t) are used. 

Table (4) 

Table (5) 

I 
Time I I t = 2 1  t = 4  / t = 6  j t = 8  t=10 

Presefit 
L X l O  

For v = 112 a very weak shock wave develops, when v = 1/8 we obtain a 

v = 1/8 At = 0.025 h = 11300 

Time I I t = 2  1 t = 4  1 t = 6  1 t = 8  1 t=10 

moderate shock wave and when v = 1/24 a strong shock wave is produced. As the 

0.002 

3 /Present 
L2X 10 

0.003 

0.045 w IGardner(1991) ,0.004 j0.006 10.007 

0.028 

0.228 

0.034 

0.346 
L X l O  
w 

0.017 

Gardner(1991) 

Present 

Gardner(1991) 

0.043 

0.045 

0.005 )G.013 

0.006 ,0.010 ,0.014 10.022 

0.035 

0.227 

0.039 

0.339 

0.035 

0.001 10.002 10.006 0.016 

0.034 

0.227 

0.040 

0.340 

0.035 

0.227 

0.041 

0.347 

0.035 

0.226 

0.041 

0.226 
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value of v is decreased the propagation front becomes steeper. The L2- and La- 

error norms for the these simulations are given in Tables 4, 5 and 6. For a 

large values of v the errors are small and as the value of v is decreased the 

errors tend to increase, but for all the values of v used here, the errors are 

still acceptable. 

Table (6) 
- - 

v = 1/24 At = 0.025 h = 11300 

Time I 1 t = 2  1 t = 4  1 t = 6  1 t = 8  ] t=1C 

CONCLUSION 

I I 

We have shown that the collocation method with quintic spline interpolation 

functions over constant sized finite elements is capable of producing numerical 

solutions for the Burgers' equation of high accuracy even for small values of 

the viscosity. We therefore conclude that the algorithm outlined in this paper 

is a very serious candidate when accurate and efficient solution of Burgers' 

equation are required. 

0.279 

L x lo3 
a, 
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