Munsouru Engincering Journal, (MEJ), Vol. 31, No. 4, December 2006, Pl

On Multiple Objective Linear Programming Problems
with Fuzzy Rough Coefficients

Askall 4 el Cilalaall Gl Calaa ) soanda Adadll A il JSLAa

M. . A Fl-Mikkav
Prof. of computer science
Faculty of Science
Mansoura University
mikkawy@y=ahoo.com

Y. A. S. El-Masry
Ass. Lecture
Faculty of Science
Mansoura University
Yasser_elmasry(@mans.cdu.cg

- oAl

Caed AEAN 4l GO leall Gl Calaa'Y Saaade Aukadll Aae jull JSLEe Al Hally Ly Caal)
Al JSuglh JSE5 Al o gl gy SIS 5 Cangdl N g Jaall A 5l Jlae Y peany A all s
A el 5l Jals analia JAof J3S (e Jlie VI Cand ACEN Jad Cay jad I Ul 5 5 AS2A
Bl § 588 a5l Loae Yl Lbae | 5 Jall G3SH 5 5 55 peadl day 2l e Jgeaall 23

M. L. Hussein
Prof, of pure mathematics
Faculty of Education
Kafr EI-Shiekh University
mlhussein@hotmail.com

Abstract:

This paper deals with the multiple objective linear programming problems with fuzzy rough
coefficients. We consider the problem by incorporating {uzzy rough coclTicicnts into a multiple objective
linear programming framework. A solution concept that is atiractive [rom the stand points of feasibility
and rough clTiciency is specified. A necessary and sulficicnt condition for such a solution is establishel,

A numcrical example is also included for the sake of illustration.

1. Introduction

Making  decisions  involving  multiple
objectlives is a daily 1ask for a lot of researchers in
the more diverse ficlds, Hence multiple objective
decision making problems have defiued a very
well studied topic in the general area of decision
making theory. In particular, multiobjective
decision making problems which can be modeled
as mathematical programming problems are also
well known.

The involvement of diflerent
fuzziness in these problems is an interesting
matter. it has received a great deal of work since
the carly 1980s. This is due to the fact that
decision makers have somc lack of precision in
stating some of the parameters involved in the
model.

The multiple objective lincar programming
problem arises when two or morc non comparable
linear criterion functions arc 1o be simullancously
optimized over a polyhedral set.

Many researchers are concerned with this
subject, (sec, for instance, Kuhn and Tucker [6],

kinds of

Tamura and Miuca [15]). Vaogeldere [17] and
Zadeh [18] ).

Tanoka  and  Asai  [16]  formutated
muliiobjective linear programniing problems with
fuzzy parameters. This has be done by following
the Tuzzy decision or minimum operator proposed
by Bellman and Zadeh (2] together with triangular
membership functions for fuzzy parameters. They
considered two types of [uzzy multiobjective
linear programming problems. Oue is o determine
the non Jluzzy solution and the other is 1o
determine the fuzzy solution. There are different
methods for comparison of fuzzy numbers
[1.3.4.9.13,14]. One of the most convenient
methods is the comparison by integration [1,4.9].
By using the concept of comparison of fuzzy
numbers, Maleki and Tata [8]. introduced a new
method for solving the fuzzy number lincar
programming problems.

The notion of rough sets has been introduced
by Pawlak [11]. and subsequently the algebraic
approach to rough sets was studied by Iwinski [5].
The concept of fuzzy sels was investigated by
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In scction 6, we give 3 numerical cxample for the
sake of illustration. A conclusion and fatere work
arc given n scclion 7.

L, Furxy Rough Sct Theory

The notons of (uzry rough sel ikeory e
iustrated throwgh the following delinitions. For
nore details sec [10],

Definition 2.1 {19)

Let X be a sct and L be a lattice. In particular L
could be the closed inserval [0,1], A fcezy set A in
X is characicrized by a membership function ju, -
X = L, which associates with cach point xe X its

degree of membership pa(x)eL.
Let A and B be fuzzy sets in X. Then,

(A =B e pi (x)=ug(x)Vre X,
(DAdc Be p,lx)<plx)vxe X,
MHC = Au b & g (x)=max(p, Led i, ()] e X,
(D= AN B = gi,(x) = minfg, (1) p,()Vxe X,

Definition 2.2 (3]
The a-cut of a fuzzy set Als
A, ={reX:u,(r)2a).

Drefimition 2.3 |5]
A luzzy sel A is 53id 10 be convex if [or every

dgain) s’ o’ o X shwe, o 00 = Ap2" o L' ) minl g 00" 1 0 00"

Delinition 1.4 |8]

A fuzzy set A is said o be normalized if there
exists xe X smchihat gi,(x)=1.
Also, it can be casily werified that for any fuzzy
subset A of X;

(1) A i convex il and anly il A_ is convex.
2) If A is conitnuous, then A is convex il and
only ifl 4, is closed interval.

Defimition 1.5 |¥]

A fuzzy subset 4 of X which is continuous,
convex and mormalized is said 1o be o fuzzy
number.

Definition 2.6 [7]

Let X denote the o product X' = X x = X
and let F be a funciion defined by The exiension
principic states that [ can be cxicnd 10 a-tuples
{o' 2" a")vwhere A b5 a Tuczy subsci of X a8

follgws;
I e

# 2 Dbt ()

Delinition 2.7 [11)

Let U be a moncmmpty sct and fet P be a
compleic sub algebra of the Doolean algebra P(U)
of subsets of U. The pair (UJ) is called a rough
UNIVETSC.

Let {={ U} be a given fixed rough universe.
Let R be the relation defined as follows:

A=A, Ay yeR il and only if AL Ay ep.
c Ay clements of R are called rough scts
clemenis of [ are called cxact sets.
clement (X.X)eR with the element Xe

g
B
:
:
]
B
H
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mmhnﬂ"”hr”ﬁ.
wo




Mansoura Engineering Journal, (MEJ), Vol. 31, No. 4, December 2006,

NA=B= A, =B,,4, =8,

(2)Ac B& 4, c B, 4, c By;
NAVB=(4, VB A4, B,)
(4)ANB=(A,NnB,,A4,NB,).

Definition 2.8 [10]

Let U be a set and 3 a Boolean sub algebra of
the Boolean algebra of all subsets of U, Let L be a
lattice. Let X be a rough set then, X=(X(,Xy)e p’
with X < Xy.

A fuzzy rough set A=(A_ ,Ay) in X is
characterized by a pair of maps
My X, L, p, X, - L with the property
that u, (x)s p, (x) Vxe X,,.

For any" two fuzzy rough
A=(A,,4,).B=(B,,B,) in X then,
(A= BQyAL{x) = pBL (x)¥re "‘L'”AU (x)

sets

=pp (X)Vxe X,
8, v
(Q)AcBe p, (X)Spup (X)Vre X, u
4, 8!. LHa,
(x)< }‘BU (x)Vxe XU:
B)C = AV B o p (x)=max{p, (X) sy, (x))Vxe X,.

He, (x) = max{p, (x).py (¥)}¥x e X,
(4)D=ANnB & py (x) =minfu,, (x) 4y ()IVxEX,,

fy, (x)=minfu, (x).pu, (x))Vxe X,,.

Definition 2.9

The a-cut of a fuzzy rough set A is
A=y oy ) where,
A,‘_z{xex,_:;:&(x)zcﬂ..é

Hia

Definition 2.10
A fuzzy rough set 4 =(4,,4,,) is said 1o be

convex if 4, and A, are convex fuzzy sets,
Le.
g (0= + )2 min(u, (x),

/1 a0

ﬂ"L (xzi)Vzi E[O,l]..\".xz €\,
}ldu (1 —A}xl + .szj 2 mi“{‘“du [.tll.

MAU (.tz])VIl e[D.i]..ll..tz eXy

Definition 2.11

A fuzzy rough set 4 =(A4,,4,) is said to be
normalized if there exist an
x€ X, suchthat p, (x)=1

={ve X, iu, (v)2a).

P.3
Definition 2.12

A fuzzy rough set A=(A,.A-) which is
continuous, convex and normalized is said to be a
fuzzy rough number.

Definition 2.13
Let

X = (X, X0) = (X0, X (XL X5l XL X))
, and Ff be a function defined by
fi(X,.X,)>(R,R). The extension principle
states that f can be extended to n-tuples ordered
pairs  ((a),a),).(a},a;),...(a],a}))  where
A=(4,,4,) is a fuzzy rough subset of
(X,,X,) as follows;

3. Problem Formulation
3.1. Statement of The Problem
Consider the mathematical program

(P): max (¢'x,¢%x,...c"x),

Ax<b :

x20
where ¢’(j =1.2,....k) are n-vectors, b is an m-
vector and 4 an mxn matrix, all having luzzy
rough components.

By using the concept of fuzzy rough sets.

problem (£ ) converts to the following two fuzzy

problems. The first of the lower bound for the
rough parameters and the second of the upper
bound for the rough parameters.

(P ) max(E,'_x,Ef.\‘,...,E:x) ,
Z,_x < !;,
x20.
and

() max(E,:.x, EJx,....E;x),

Z“xsgt,

x20, _
Here, we must specify the appropriate

solution concept for this problem. For this task,
we define the following solution concepls.
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3.2, a-Fuzzy Rough Feasible, p-Fuzzy Rough
Efficicnt and satisfying solution for (p;).

Definitioa 3.2.1 [a-Fuzzy Rough Feasiblc)

Considera = (@,,a,,...a,)a, €[0,]].
xeX={xeR" :x20} is said to be a-fuzzy
rough feasible for (7)) if
Ay (F)za,pu (F2a, .
where,

!?& = {;f,‘x SE‘,xZ 0},

F",L, = {;1',‘, x< B;__ yx204i=12,...,m.
Using the extension principle we have
e = sup min(‘u@’u (ay, ),;r;,':’l (a3, )""“"5.q

(o, ) st5, (5, )
‘u?-u =Supmin(p5”“ (a“rr )’ﬂarzu

(ailn )!"'tﬂﬁw (a;'n” ): #S:b' (br'” ))

Consider now the following mathematical

program;

(P,): max (¢'x,6%x,..,8" %),
xeDcX={xeR":x20}

Definition 3.2.2 [p-Fuzzy Rough Efficicnt]

x’ e D is B-fuzzy rough elficient for (7,); if
there is no
xeD,ie(l,2,.,k): p. (C))2 By (Cy)2 /]
where,

CL-|(r}_ ..... :t)eﬂh' tixz:}.xo.. ..t‘;_'t,izci"xo.cincixo.
c‘rl:h‘rlxu ..... cixacf.‘ot‘

Cu= I{tb .....:ﬁ-le R“""rb,rarb:o._, _:.-b": “U'"o-‘fr“‘b“u-
t‘i?‘er{;'l.to ..... céx:cﬁxo[.

¢,.C, are the set of all lower and upper fuzzy

coefficient for the fuzzy rough coefficient C to
problem (7).
On account of the extension principle,

Hz, (€, ) = SUp Min (s (610 i (€1 )y Mz (€10) 2 B
Hs, (€)= supmin (i, (€l ) s (€ Do My (€GN 2

Dcfinition 3.2.3

x% € X is an (a,p) satisfying solution for (p)) if
and only if x° is B-fuzzy rough efficient for the
program

(P,): max (¢'x,¢x,....c'x),

xe X
where X “denotes the set of all a-fuzzy rough
feasible actions for (£).

4.Characterization of An

Solution for (p;).

(a,B)-Satisfying

Consider the mathematical program

(3 J T TOE 0 i 0 OO g )
xeX° _I

where ('), =((€')4(E,)5-1E,"),) and ),
denoles the f}-cut of the fuzzy rough number ¢;.
By the convexity assumption,
(€, )p,)=12,n,i=12,..k arc rough rcal
intervals that will be denoted as [C}'(4).C(0)]
and given by
[(A-A)c}, +Ac), (1-0)c7, +0cT 105 A.0<1

Let now ¢,(2,0) be the set of all kx»n rough
real matrices C(4,0) = (c,,(4,0)) with,
fy('w’e“‘-'”?j"" +AE}’L.

(I—G)E}”'L +0E}”‘b,|.os,l.05|.

It is clear that (/) may be wrilten as:

max (ex:x € X%, ceg,(4.,0)).
(P,) is then a family of pair multiple objective
lincar programs.

Definition 4.1

x° is rough efficient for (2,) if and only if there
is no ¢(4,0) € g,(1,6),xe X? :ex 2¢x” with at
least strict one inequality holds. In other words,
x"is rough efficient for (P,) if and only if x* is
efficient for

max <¢x

Y c(4,8) € 4,(4,6),

xe X°
Now we are going to givc the following result.
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Theorem 4.1

x° is an (e,B)-satisfying solution for (A) if and
only if x° is an rough efficient solution for (7,).
Proof.

Suppose that x° is an (a,B) -salisfying solution
for (P,) then by definition, x° is a-fuzzy rough

feasible and B- fuzzy rough efficient for (7).

0

Assume now that x° is not efficient for (7,).

Then there is

xle Xa,(cl,cz,...,ck) withe! e (Ef)ﬁ;
and

el 220 e 12, k)

iy €{1,2,...,k} such that

x> evx? . (N
As ¢" €(c"),.i=12..,k we have also

min(g, ('), p, 1 (€)espt (")) 2 Band

min (4t (). p 1 (€D tt,  (* ) 2 B
)

By (1).(2) we have

sup 1.0,
Ll

A i & A
Ay lc-’f‘ mln(p;”{r. l..lr‘._r-_;(t l.....yl_,‘&(t lhpﬂ_[t £ 2y
0 i i X

- =1 4
B I P | 200, c’o,to.v*o‘l,v" P R Wy

A 1)y 10
X P

ta=l =1 1 .l I
we? n 21"0 .\'0.. 0, )n"u.la.c"n P l"n. _‘O'I___‘J‘l ku'l.\'nllﬂ

where.

e | e =1 f,
f;; aitel e w2 50 0T 07,0 005 0,0,

‘1001‘1 2\"0.'.(0....,."3' 2.‘.1'0:_: af r’

This contradicts the B-rough efTiciency of x° for

(#;) and the if part of the theorem is established.
To show the only if part, suppose x° is efficient

for () and not (a,B) -satisfying solution for

(A). Then there is x* € X?;Se{l,2,....k} such

that

)‘J;_‘ (cf. ) 2 ﬂwuc-, (Cu ) 2 ﬂ

where

,u‘-,.(clx? 2t et 2 X0

a2t N2 Be= LU
ie
SUP, 11t sere TR (€' )y s (c*) 2 p.

2
ixisetx®,

R} 2 ‘ |
"‘N-"” mlﬂtﬂ;}'lll Lﬂl-‘;-:h )m"ﬂl-‘“kh }]:p“:”p ALY 5kl e
N !

where,

=l e R IS 25 e 2 e 0 e s e,
PR S T LT LS R U W R T

By using the extension principle then, we have

Sup min(uy, (1), g () (€1 ) 2 B,

and
(3)
Sup min (s, (€1, ), Hos (€5 ) i (60)) 2 B.

For this supremum to exist there is (p', p*..., p*)
satisfying the lollowing constraints;

P2 Pt i 2 i Lt 2 pT R i s i,

nl“_l 2 pul.'ﬂ‘" .plx: > plxo

4)
Suppose now that for all (p', p*,..., p') satisfying

the system. (4). we have : min
gy (P 1 (7 sty (P1)) < Band

min
oy (P Wbty (D7) i (') < B, the,
Sup min
Ut (2" gt (P Vs bt (RN (R ) ot (P Vet (P M < B
Sup min

(P s p Ve gt U™ )t A st (P Dt A M <,

Contradicting (3). There is then (p',p...p")
satisfying 4) such that
min (41, (P Yrsipt o A PFYY R B,

min (40, (P ) (P¥y) 2 4.

&)

By (), s (p') 2 B,i=12,.. .k

i.e. P e ), i=12, .k
(6)

(4) and (6) contradict the efficiency of x° for (ps)
and we have done.

5. A Solution for (py)

The following notations will facilitate further
discussions.
My(A,0) denotes the subset of ¢,(4,6)

composed by matrices C(4,6) having elements of

each column at the upper bound or at the lower
bound.

e if C(1,0) e M ,(A,6) then either
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c;'(3)
¢} (4)
e (2) e (0)
where ¢'(4)and c]"(6) are the left and the right
end point of (C;(2,0)) , respectively.

c;'(8)

(0

Ci(D= or C*(0)=

Lemma 5.1

A necessary and sufficient condition for x*
to be efficient for the multiple objective program
max Cx.,xelX

Is that there is A>0 such that x° solves the
mathemalical program max ACx,xe X.

A fascinating point is that the following program
yiclds an (a. J) -satisfying solution for (P,):
(P):max ¢°x,xe X"
where ¢° is a solution of the system
V'C'(A,0)-q =0 Visuch that

C'(.0) e M ,(2,0), )
Proposition 5.1

If x* is optimal for (£,) then x° is efficient for
(R).

Prool’

As q"is a solution of (7)., Vi such thal
C'(A,0)e M,(4,0), there is V'ek' V' >0
such that ¥'C'(4.0)=¢°,
ie. Wi such that C'(4,0) & M ,(A,0), x° solves
max (V'C'(A.0)x:xe X*).

By lemma 5.1, x* is efflicient for max
(C'(A.O)x:xe X") VC'(A.0)e¢,(1.0).
i.e. x° is efficient for (P,) as desired.

Corollary 5.1 '
If x*is optimal for (£)then x%is an (@.0)-
satisfying for (7).

Thig statement follows directly from Proposition
5.1. and theorem 4.1.

6. A Numerical Example

In this section we are going o give a
numcrical example.
Consider the following multiple objective
linear fuzzy rough program

(P)max (&'5,&'x)
such that
x, +x, 2250,
x, S 200,
2x, <200,
2x, +1.5x, S 480,
Jx, +4x, S900;x,.x, 20.

where & = (6.8 8" =(&),,En) and
¢, =(%,,c, ) are fuzzy rough numbers
characierized by the membership lunctions shown
in Figure (1a-d). .

This problem can be converted into the following
two [uzzy probleins. The first problem is,

(7,) max (&,'x8 %)
such that
X, +x, 2250,
x, <200,
2x, 5 200,
2x, +1.5x, < 480,
3x, +4x, $900,x,,x, 20.

where, 7,' = (@, .8y, )" =(,.Cy,) and T,
are fuzzy numbers characterized by the
membership functions shown in Figure (2a-d).

The second problem is,

(P, ): max (,'x.8,"x)
such that
x, +x, 2250,
x, 200,
2x, < 200,
2x, +1.5x, <480,
3x, +4x, $900,x,,x, 2 0.

where, Eni’“ﬁn. 'Eu, Laﬂ!-(all. &y, ) and €,
are fuzzy numbers characterized by the
membership functions shown in Figure (Ja-d).

In(A,), let §=0then we obtain
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(@), =[01=2)+14,2(1-0) +30] =[2,0+ 2],
(€2), =[0(1-2)+12,](0 - 0) + 20] = [1,0 + 1],
(€)= [=2(1-2)+02,0(1-6) + 28] = [24 - 2,20],
(€n)p =[-3(1= D) +14,1(1-0) + 20] = [44 - 3,0 +1).

and 0 4,6<1
A=1,6=0

(EII).GI = [1!2]!(E|1 )p = {l} = (Ezz)p»(an )p ={0}.
The subset M ;of ¢, is composed of the matrices

By putting

:

4
For ¢° =[ 5

As well as the system

o s )-(35)

has positive solutions given by

V! (15 v} _(0.75
)G} LE)-55)
respectively.
As constraints are crisp, the set X of points of R’
satisfying (A,)is nothing but the set of 1-fuzzy
rough actions, By the corollary, the program max

(¢°x|xe X?) yields a (1,0)-satisfying solution
for (#,).

Solving this linear program, we obtain the
solution (x,,x,) =(150,100).
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problems and parameine studies
active consideration. This will be the subject of
the next paper.
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