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ABSTRACT

An improved model of modal parameters of glass reinforced
plastic structures (GRP) is presented. The extensive analysis of
the fitted experimental results proves that the quasi uniform mass
damping is the main feature of vibratory GRP structures.
Consistent with the analysis it is stated that the number of
boundary degrees of freedom, code number, volume fraction and
typical order of natural mode have significant effects respectively
on controlling the type of each set of quasi rectangular hyperbolic
relations associated with the vibration damping of GRP
structures.

The close agreement between the numerical results of the finite
element model and the fitted experimental results shows the
efficiency and applicability of the present modelling techniques,
resulting insignificant simplifications in solutions of
idiosyncratic composite systems with lowest residual errors.

1. INTRODUCTION :

Model updating has been a subject of study in literature for
many years [1, 2]. Most of the procedures try to minimize the
deviation between the analytical and experimental models by
adjusting the analytical and experimental model on the basis of
experimental measurements. The development of mathematical
models has required best memory to be more accurate and has
high computational speed which plays an important role i n
vibration analysis of composite complex structures in the recent
decades.
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At the -present time, it is still difficult fo determine accurately
the model characteristics of composite-structures particularly the
damping capacity by an analytical approach. The experimental
confirmation prediction is therefore at very least desirable and
can be used to build up the mathematical model. This in turn
leads to more clearly understand the effect of parameters for
controlling the dynamic nature of composite complex structure.

In the present work, an attempt has been made to build up an
efficient simulation of modal parameters with an improvement of
convergence characteristics of modelling process within a wide
range of frequencies for different stacking sequences at two levels
of volume fraction taking into account the influences of
constraints subjected to the composite structural beams.

For the sake of minimization the residual errors and raising the

~confidence levels for building up the model, weight factors («, a)
‘have been. introduced for correlating and updating the
construction of the mathematical model to the experimental data
through the utilization of the curve fitting response functions [3].
This has resulted generalized quasi rectangular hyperbolic
relationships between the loss factors and the natural frequencies
for various degrees of constraints within the confidence level
99.2 % at least. This in turn permits the uncoupling of
simultaneous equations of motion of composite structures of large
number of degrees of freedom with the lowest residual errors.

i
In that way the curvilinear fitting techniques are reutilized to
generate other quasi hyperbolic relationships concerned with the
loss factors in various set of natural modes with confidence level
98.6 % at least.

Other object of the present work is to analyze guantitatively
the influences of the degree of constraints, to be considered, on
the nature of modal parameters of composite structures.

In the experimental work, Fig. (1b), four types of boundary
conditions have been subjected to composite beams made. from
glass reinforced plastic GRP. Various specimens made from three
plies (L X b X t) Fig. (1la), are tested for two levels of volume
fraction (a) a weakly composite 15 % and (b) an average
composite 45 % in each type of constraints.

Experimentally the first four natural frequencies and the
corresponding loss factors are listed in the third and fourth
columns in tables 1 to 8, respectively. For the sake of
verification with the experimental measurements the first four
natural frequencies at two levels of volume [raction are computed
by the use of the modified formula MFM [3] and listed in the
second column of these tables.

To high lighl the nature of the damping parameters, family of
curves representing mutual relationships of modal parameters are
plotted in Figs. (2 & 3) in terms of the results listed in Tables (1
to 8).
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The close agreement of the results of the proposed
mathematical and experimental models proves the efficient
applicability of the proposed model and enriches the
understanding of dynamic nature of vibrating damping composite
structures. This in turn leads to uncoupling the dynamic equations
of motion partlcularly of large complex composite structures with
minimum time of computation and residual errors.

2. MATHEMATICAL MODEL OF VIBRATION DAMPING OF
COMPOSITE STRUCTURAL BEAM

In the last decade, it was mentioned in Ref. [5] that _the

hyperbolic relations between m and ® of composite plates,
vibrating at the first mode and subjected to different boundary
conditions, provide a more reliable prediction throughout the utili-
zation of the uniform mass damping model. The developed
mathematical model was established by the utilization of the
student distribution approximation with confidence level at 95%.

To improve the convergence characteristics of the mathematical
model within a wide range of frequency spectrum at various code
numbers, modified quasi hyperbolic relations are developed by

introducing the proper weight factors (o, a), [3] throughout
utilization of the least square technique.

In the present work a generalized vibratory damped model
made from glass reinforced plastic is developed. The
interrelations between the loss factors and the natural frequencies
from one side and the order of natural modes from the other side
are obtained by applying the fitting response function on the
experimental results of composite structural beam specimens: The
models are subjected to different types of boundary conditions,
for various stacking sequences, and for two levels of volume
fraction. As stated in [3]the quasi rectangular hyperbolic
relations between loss factors m and natural frequenmes W are
recast as

nl = ai ((Dl)~CU 1 = l’ 2’ R (l)

In addition the same relations between loss factor 1 and order of
natural modes (1) is deduced by the same technique and the form

=B ()Pl . i=1,2,.m RO (2)

where n=the number of natural frequencies in the selected
frequency spectrum.

With the help of logarithm forms these relations can be
transferred to linear forms here as.

ln n; + ]n w; = ]n Q] e (3)
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I Mi+Bik ()=l By fori=1,2 .1 oo 4)

The advantages of logarithm form is mainly for facilitation the
quantitative analysis and the applications of extrapolation and
interpolation techniques for controlling the loss factors and
frequencies at the selected boundary conditions within the
required frequency spectrum.

For the sake of verification of the measured natural frequencies
at various states, the first four natural frequencies were
numerically computed by the modified developed formula [4] and
the form

A ( D* )% ..................................................... (5)
Il ~
2TL2 \pc - t
where D* = the condensed bending stiffness modulus of

composite structural beam,
. = the equivalent specific mass of composite beam [3].
C p

3. EXPERIMENTAL MODEL OF VIBRATION DMPING O F
COMPOSITE STRUCTURAL BEAM

3.1. Experimental specimens :

The frequency response tests were performed on four types of
fixation on composite beams made from three layers glass fiber
reinforced plastic GRP of various orientations at the first four
modes and at two level of volume fractions. A typical specimens
GRP composite beam of dimension (210 x 20 x 3 mm) made of
three plies with 1 mm thickness for each ply for V. 15 % and V.
45 % is shown in Fig. (la). To study the effects of degree OF
constraint, lamina orientations and stacking sequences on the
modal parameters, six code numbers of specimens were fabricated
by hand lay up technique and stated as (0/0/0), (0/30/0), (0/45/0),
(0/90/0), (45/-45/0) and (45/0/45) for the two volume fraction 15
% and 45%. .

3.2. Instrumentation Layout :

The experimental apparatus is shown in Fig. (1b). The four
boundary conditions of the six specimens stated as fixed-free
(3D), hinged - hinged (4D), fixed-hinged (5D), and fixed-fixed
(6D) could be maintained by the clamping fixture.

The specimens are excited by impact hammer to determine the
resonance frequency [6]. The excitation signal is fed to the dual
channel analyzer through conditioning amplifier and a light
weight accelerometer.

Signal analysis is carried out by the analyzer linked to a
computer with structure measurement system as shown in Fig.
(1b). The analyzer having a frequency range of 25 KHz can zoom
in various selected frequency ranges.
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The damping parameters for each specimen are calculated by
using the peak method within the selected frequency spectrum.

4. RESULTS AND DISCUSSIONS :

Refer to [3] the least square technique is utilized and the quasi
rectangular hyperbolic curve fitting is plotted for the measured

values (1;, w;) within the ranged of confidence level 98% to 99.99%
as shown in Figs. (2, 3,).

To study the effects of the number of boundary degrees of
freedom stated as 3D, 4D, 5D and 6D on the damping capacity of
the samples, Fig. (2) lndICdteS that the damping capacities increase
and the natural frequencies decrease in monotonically manner with
increasing degrees of freedoms.

Without loss the generality the quasi hyperbolic interrelations of
damped natural frequencies ®,; and dampingcapacities are
permanently valied for the four cases of boundary conditions
subjected to the six specimen lamina orientations for the first four
modes, and for the two volume of fractions V¢ as depicted in Figs.
(2 and 3) and the form

ni=a@)® fori=1,2,3,4>a>0,a>0) e (6)

With the help of the least square technique concerned with the
curve fitting response functions, the generalized quasi hyperbolic

quantitative relations between damping capacities (N, ) and

frequencies (w,, ) for the various types of fixation at the two

volume fraction are correlated with confidence level 98.4%, at least,
as listed in Table (9) and plotted in Figs. (4a and 4b).

To facilitate the quantitative analysis of the weight factors (o, a)-
for updating the mathematical model logarithmic forms of the quasi-

hyperbolic relations (M; - ®;), for various orientations and for
different types of fixation for all specimens are plotted in linear
forms as represented in Figs. (5 & 6) and (7 & 8). It is noticed that
the slopes assigned by the weight factor (&) are mainly depending on
the degree of isotropical state while the damping constant (a)
depends mainly on the flexibility of the specimens.

From the computational and expenmemal values depicted in the
previous tables and figures it is shown that the weight factors
increase as the volume fraction increases and as the lamina
orientation leading to a low stiff composite structural beams as
expected.

Also it is shown that boundary conditions (types of fixation) have
significant effects on the damping parameters associated with the

weight factors (¢, a) compared either with the influences of lamina
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orientations or with the volume fraction V¢ As an example the

damping constant in the fixed free state is increased by about 24
times of the correspondant in the fixed fixed state as shown in
Table (9).

Table () : Generalized forms of interrelations between damping capacities, 1 and natural
frequencies, w for various fixations of LCB at two levls of fiber volume fractions.
V¢ =15 % and 45 %. (Ref. Tables 1 10 4 for Vi = 15 % and Tables 5 1o 8 (o1
V =45%).

Fiber volume fraction, Vf

Fixation
15 % 45 %
ni= 3.097479503 (mi)«().5637788‘)ll ni= 2.852583936 (wi)-().55(>72()7|56
"_“ Confidence tevel = 98.79 Conlidence fevel = 99.25 9%
5 nis 13.67496044 () V7130483416 N =12.48529197 (ey) 704074391
Confidence fevel = 98.97 % Confidence level = 99.41 G
‘ ;= 31.375641 (mi)-().7k)‘)73()28( = 26.87749517 (wi)-().77‘)2277878
Confidence level = 98.75 % Contidence level = 98.96 %
‘ . ni= 74.56746475 (wi)—().88(7752724() ni= 63.95389482 (u)i)v(l.h‘(v(w()44()344
Confidence level = 98.40 % Confidence level = 98.46 %

In view of the experimental measurements listed in Tables 1 to 8
it is obvious that the loss factors are monotonically decrease in
hyperbolic feature as the mode number increases.

For quantitative estimation of these relations, the curve fitting
response techniques is utilized and the form

Ni =B Q)14 for i=1,2,3,4 o) (7)

, It 1s of interesting to note that
the loss factors decrease by the same rate by about 1.4 for all cases
while the damping constants B; are strongly affected by the volume
fraction.

By visual inspection of the measured values of loss factors and
the corresponding hyperbolic fitting relations in Tables 1 to 8 it is
noticed that the damping constant B is nearly equal to the loss
factor of the first natural mode. This remark exists for all types of
fixations and for various code number such that one can suggest that
the loss factor at any number of mode can be related to the
correspond 1st mode in the following empirical serial form. -

N=M 7 = 230 ] e S (8)

The correspond logarithmic form is then given by

InMi+ LA i=10M0 )

and as shown in Fig. (9).
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Figs. (10) and (11) show the quasilinear relations between the
number of degrees of boundary freedom and the equivalent
damping loss factor for the two levels of volume fractions.

It is worth to mention here that the use of logarithmic form is
not only, for facilitation the quantitative analysis and for
computing the loss factors either in terms of the natural
frequency or in terms of the mode number by extrapolation or
interpolation techniques, but also for control the magnitudes of
natural frequencies and damping capacity by proper choice of
boundary conditions and types of fixations in the selected range
of the frequency spectrum. As an example from the results listed
in Tables (1 and 4) it is noticed that the third natural frequency at
(0/30/0) orientation of the fixed-fixed beam is nearly equal to the
fourth natural frequency at (0/30/0) of the fixed free for V¢ 15%.

Similarly the fourth natural frequency at (0/0/0) orientation.of the
fixed free beam is nearly equal to the third natural frequency
(0/0/0) at fixed fixed for volume V, 15%. Also for V¢ = 45%. at

fixed free it is obvious that the third natural frequency at (0/30/0)
is nearly equal to the second natural frequency at the fixed fixed
beam and the damping capacities are almost the same.

By the inspection of experimental results listed in Tables (1 to
8) it is evident that the changes of outer orientations have
permenant significant effects on the damping capacity, and
stiffness, of the specimens compared with the changes of the
inner orientation regardless to the degrees of constraint and of
the degrees of isotropism at different mode shapes as stated in
[37.

For the sake of verification of measurements of frequencies
listed in column three, the modified formula MFM is utilized to
compute the first four undamped natural frequencies and listed in
the second column of Tables 1 to 8. The comparison between the
numerical results and experimental measurements shows the good
agreement and the efficiency of the modified MFM to be -utilized
for computing the natural frequencies of composite structures
with a wide range of frequencies and at different degrees of
fixations.

5. CONCLUSION :

The present work is focused on the development of a
generalized model of vibratory damped glass reinforced plastic
(GRP) structures. The analysis of the fitted results of
measurements indicates the following conclusion remarks.

1. Without loss the generality the quasi uniform mass damping is
the main feature of damping behavior of GRP structures in
various states.

2. The tfamilies of quasi rectangular hyperbolic relations between

the damping loss factors and natural frequencies are stated by
the lowest residual errors by using the mathematical fitting
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convenience of the two weight factors o and a.

3. The properties of each family relating loss factors and resonant
frequencies are controlled mainly by the following four
parameters :

* number of boundary degrees of freedom,

* volume fraction,

* lamina orientations and stacking sequences and

* typical order of natural mode.

In contrast to the limited variations of the weight factor (), the
damping constant (a) is strongly affected by the type of fixation
compared with the other controlling parameters as shown in the
curves of figures.

4. To disregard the influences of controlling parameters, the
logarithmic trend of the uniform mass damping behavior of GRP
is characterized by the linear decreasing of loss factors and by
nearly constant rate (o) against the monotonic increasing of order
of the natural modes.
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NOMENCLATURE :

V¢ Volume fraction GRP Glass reinforced plastic
f p

i Mode number D The degree of constraint

o, a, B. [ weight factore n Damping loss factor

n,y- Average damping capacities w,,- Average natural

frequencies
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Table (1) : The

f the first four
%

modes of the ﬂxed free GRP bcnm ol‘ voluime I'rncuon 15

Table 1.1 107070) Table 1.4 (0790704
mo((ig) No ay Wy "% nxx(lc) No Y Wi ni%
B i
1 211109 | 188,496 ]13.334) 1 208.482 175.929 {16.072]
2 1322.98¢ | 1294.336 | 4.370 2 1306.526 1 1231.504 | 5.612
3 3704.384 ] 3694513 | 2.552 3 3658.309 | Mse8.8ay | 2.728
4 T259.113 ] 7250.796 § 2.080) 4 7168.825 | 6572.212 | 2.4%6]
i = 2248738345 () 0.3372439¢ i = 3.04 1008077 (w,)-0.5345611963
conlidence Jevel = 99.4803 % confidence level = 99.0864 %
ni = 0.1248960229 (i)-1.373364081 Ni = 0 13M0617RE (i}-H 41770170
confidence jevel m 9921 % confidence level = 98,42 %
Table 1.2 {6/30/0) luble 5.5 [45¢-4510)
m«(sg) No o, gy ni% mode) No uy Wy W%
g [
1 209.544 183.354 }13.89¢§] 1 171,160 163.363 | 20.000
2 1313.186 | 1244.071 4.346 2 1072.640 § 1043.009 | 6.024]
3 3676.958 | 3606.544 | 2.614 3 3003.425 §2974.230 | 3.7938)
4 T7205.362 | 7200.530 | 2.0%4 4 3885.310 § 5811.946 | 2.648.
i = 2463872500 (10,)-0.5481337063 Ni = 35631542 (0, )-0.3694 874495
confidence level = 99,5838 % confidznce level m 99.6619 %
ni = 0.1308671564 (i)-1.397219936 Ni = C.IRTHOB4TES (i) 1437363957
confidence level » 99.34 % confidence level » 99,49 %
Table 1.3 {074570) Tuble 1.6 {4510745)
nm(l;) No w i m % wede No o ng; ni %
i i
1 208.936 179.071 |14.912: [} 123.615 119381 123,684
2 1307506 | 1237.788 | 6.076) 2 T74.666 | 7066.549 | B.196
3 3661,049 | 3581.416 | 2,632 3 2169.094 § 2161.416 | 4.534
4 7174.191 1 6754.424 2.280] 4 4250.356 § 4234.467 3.086

ni = 2,743609311 (0;)-0.35319680819
confidence level = 99.3578 %

Ni = 0.1416141987 (i)-1.410761533
confidence lovel = 99.10 %

w, = Frequency, (md / sec)
wgi ~ Damped frequency.(rad 7 sec)

n; = Damping (%)

i = 3.797399516 (w;)-0.57626:30833
confidence level w 99.9998 %

Ni = 0,233379560K (i)-1.47eR13122
confidence level m 9997 %

Table (2) : Th= numerical and experimental modal parameters of the fisst l’our
odes of the hingd-hinged GRP beam of volume fraction 15 %

Table 2,1 {07070} Tablc 2.4 [0790/0)
mode No @ Wi i % mo‘(_k)Nn “ Wai ni %
i
H 593.069 { 582932 |12.924 1 385.689 | s7a.231 15974
2 2372.247 | 2360.756 | 4.300] 2 2342741 | 2331.456 | 5.469
3 3337.353 | 3329.478 | 2.523) 3 3271165 | 5260374 § 2.699)
4 9488.985 | 9479.624 | 2.051 4 9370.959 | 9365.423 | 2.430]
ni = 9.327002654 (w,).0.6800214877 Nl = 14.3048158 (0,).0,7131617267
confidence level = 99.25 % confidence lcvel = 99.68 %
ni = 0.1213309721 (3)- 1360037027 Nl = 0,1519456954 (5)-1.42631996
confidence level = 99.25 % confidence levet = 98.88 %
Tabie 2.2 fo/30101 Tabie 2.5 1451-4570)
mo-(’s)No w wgi ni% mo-(lie) No wy Wyi n%
i
1 588.673 | 380402 |13.699 i 480.840 | 470232 |19.634
2 2334.683 | 234933t | 4.500] 2 1923.358 | 1920.272 | 6.001
3 5298.036 | 3289.322 | 2.600) 3 4327.559 14320432 | 3.456
4 9418.720 § 9400.163 | 2.090 4 7693.433 | 7686,245 | 2.613|
i = 10.78741662 (0,)-0.6941 263582 ni = 16.34395142 (10,)-0.737840974
confidence Jevet = 99.32 % confidence level = 99.47 %
ni = 0.1289065342 (i)-1-388250332 N = 0.1846925915 (i)-1.4772021 14
confidence level » 99.32 % confidence level = 99.47 %
Table 2.3 [6/4570) Table 2.6 [4570745)
‘mode No w, Wi ni% ‘mole No o g ni%
(i} )
i 586964 | 577.432 |14.645 1 347.272 | 340.234 |22.732
2 2344.498 | 2339.342 | 5.000] 2 1389.059 | 1379.921 | 7.002|
3 5275.113 [ 5269.921 | 2.629 3 3125393 { 3120.781 | 4.214
a 9377.974 § 9369.542 | 2.250] 4 3536.251 § 3549956 { 3.000)

Ni = 12.23150901 (w,)-0.7021821801

confidence fevel = 7 %
i = 0.1391538401 (111403660715

confidence level w 99,17 %

w
i
wy; = Damped frequency (rad £ sec)

n; = Damping (%)

= Teequency, (rad / sec)

Ni = 17.675K2368 (o, ,.o TIRMNT2
conhidence fovel = 99, R
i = G.220KES900T (). serams

contidence level m 99,80 %
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Table (3) : The numcrical and experimental modal ¥uxamc(ers of the first four
modes of the fixed-hinged GRP beam of volume fraction 15 %

Table 3.1 0/0/0j Table 3.4 [0/90/0)
mode No w; [ njve mode No o @i ny %

) )
1 925.742 { 918.733 |12.756] ) 914222 | 907423 [15.613
2 2999.939 | 2960.321 | 4.267 2 2962.646 | 2950310 | 35.342
3 6259.172 | 6240411 | 2.489 3 6181.321 | 6168.422 | 2.644
4 10703.556] 10694.240 | 2.020 a 10570.424} 10520.400 | 2.441

Tl = 22.80581266 (w,y 07703142447 i = 33.55103939 (u,y 07781386971

confidence fevel = 99.01 % canfidence level = 99.41 %

ni = 0.1200086107 (i)-1.361344764 i = 0.1477456184 (i)1. 410081864

confidence level = 99.29 % confidence Jevel = 98.69 %

Table 3.2 ©/30/0] Table 3.5 [457/45/0]

mode N o; W % w; wg;

g No i di n; mode No ] di %
1 918.879 | 9:0.324 |13.000 1 730360 | 732410 | 18.462
2 2977748 { 2960422 | 4.460 2 2432.292 § 2422.934 | 5.943
3 6212.832 { 6207.430 | 2.580 3 3074.786 | 5052.412 | 3243
4 10624.292 [10600.911 | 2.087 a 8678.177 | 8650932 | 2.594

V¥ = 28.40687783 (w, 0.393418373 T = 39.82579689 (w; )" 5223842334

confidence tevel m 9916 % confidence level = 99,

n = 0.1277672409 (i) )-283050408 N =0.1748510369 (-) 1 Bsomes

confidence level = 99.28 % confidence level = 99.41 %

Table 3.3 0/45/0) Table 3.6 {4570/45)

uno‘k(i)No w i e mote Ko e Wi n; %
l 916213 | 910.732 {14.291 H 342069 § 539.702 22301
2 2964.868 | 2950310 § 4.762 2 1236.613 § 1732322 | 7213
3 6135951 | 6179.211 | 2.624 3 3665.045 } 3651.634 | 3.973
4 £0378.336 [10520.902} 2220 4 6267440 | 6260.124 | 2.981

T = 286286925 (u; y 07962969339

confidence level m 98,86 %
W = 0,13453369358 (()-1.389030475

coafidence level m 99,14 %

T = 40.62264216 (uw; )“-""’2“”‘

confidence Jevel m 99.4
B = 0.2135632769 (i)- uwumz

confidence level = 99.68 %

@, = Frequency. (red / so0)

Wy; m Damped frequency.(rad / sec)
;= Damping (%)

Table (4) : The numerical and experimenta) modal paramecicrs of the first four
modes of the ﬁxcd—ﬁ‘;ced GRP beam of volume fraction 5‘%

Table 4.1 wrsor0] Tablc 44 1079070}
mo<(1l¢) No o L ni% um(sg)ue o i ni%
i
1 1343339 | 1320421 [12.334 1 1326.623} 1313.420] 15224,
2 3702921 | 3698343 | 4222 2 3636.864| 3532326] 5.239|
3 7239.203 | 7241722} 2.460) 3 7168.913| 7139.463| 2.640]
4 31999.832{ 11972.345 | 2.000] 4 11830.577| 11820234} 2392
ni = 51.28616086 {62;)-0.8493262489 Ni = 8127553368 (10))-08852311729
confidence level = 98.79 % confidence level = 98.25 %
Tl = 0416470374 (1)-1.344920053 i = 0,144295589 (1)-1 401863082
confidence fevel = 99,33 % confidence level = 98.52 %
Table 4.2 [043040} Table 4.5 {457 4570]
trods No “. . i ne modaNo, “% ~q; %
1 1333381 | 1319.73¢ | 13426 1 1089.134 | 1079.923 {17.934
2 3675.505 | 3634.432)| 4.400) 2 3002236 | 3000226 | s.712
3 7205438 7198762} 2560 3 58RS.586 | 3880.421 | 2.384
4 11910975 {11812.326 | 2.083] 4 9729.166 | 9720262 | 2.548]
ni = 63.64979558 (1,)0.069394388 Wi = 107.6262433 (w;)-0.9284367435 -
confidence level = 98.66 % confidence lovel = 98.33 %
Tl = 01258691388 (i)-1.377577889 i = 0.1685159872 (i)-1.470720083
confidence level w 99.23 % confidence lcvel = 98.90 %
Table 4.3 [0/45/0] Tablc 4.6 (45/0745)
mode No w wgy % mode No @, O T
@) ] .
1 1329.512| $320.462]14.032 1 TBE.393 | 780932 |21.952
2 3659.607 | 3640321} 4.693 2 2168.230 | 2153462 § 6.933
3 7174.283 | 7163522} 2.620 3 4250.610 | 4230.262 | 3.800]
4 11859.447 111850231 | 2,135 4 7026471 § 7019.942 | 2.803

ni = 73.4208523} (w, 1304 882331201
confidence level m 98.8:
ni = 0.1328192739 (i)-t.. J96000I53

confidence level = ¥9.35 %

i = 117.4189045 (03)-0.9334623338

confidence level = 9932 %
Ni = 0.210201369 i)-1.: w1551%7
confidence fevel = 99.71 %

w; = Frequency, (rmd £ scc)
Gy; = Dumped frequency.(rad / scc)
T, = Dumping (%)



4T.Ablc (5) = The numerical and experitmentnl modal pi

metrs ol the first four

modes of the fixed-free GRP beam of volume fraction 45 %

Table 5.1 107040} Tuble 5.4 . {0/%)/0}
“mode Ne ] Wi n; % vode No wi ~undi ;%
)

299.004 | 295310 } 10,100
1873.816 1839823 3.632
5296742 | sis2.252{ 2250

TO2R1.522 ] MXMO.530 | 1.564

294.601 276,400 | #1932
184G,433 | 122,124 | 4.396
5170069 | 49i3.451 | 2.430
10131.272 | 9952.36G | 1.704

& won

= L9TIRG4IST (o, )0.5242924013

i = 2.7G3083107 (14, )-0.5522194691

conficace level = 99.9324 % confidence level = 98,9926 %
Ni = 009808470337 (i) 134 1MA8129 ni = O.EIRIBITI2O (i)-1413270022
confidence level = 99.50 % confidence fevel = 9097 %
Tubic 5.2 e300 Tuble 3.5 145145 +0]
No wh uxii n; ouwde No [ taly
G
1 296372 | 280427 |10.870 1 20643 | 210624 {15294
2 1852.310 | 1847256 | D990 2 1445403 | 1432560 ] 5.702
3 3196.760 | 49KR.D49 | 2,330 3 MRTUTG | 4021.239 2832
4 HHOUUTE [ 1O027.964] 1.630 4 TYI0EAL | TYIVIRO [ 2208

= 228RSKOKS2 (i, ) O-3N2H2TIK
wonfidenee level = 99,
NP w O06T2CORTT (1)
confudence level w 99.95 %

56 %
1374069678

Tuble 5.3 [r45/0)

i = 309I593268 () y»u..\.\\m»_\m)
confidence el = 94,6279 9
N o= 01502380332 (0" A Nzasen

confidence level = 99,99 %

Table 5.6 [45/0745)

moe No wi anli ne*
i)

arade No wi ndi ni %
)

2va920 | IR2743 ) 10002
IRSR.2HT | iKA0823] a222
3 5173233 | 4USi IS0 234K
4 10141.394 | 10015397 1.662)

"

J41A29 | 108.230 (20910

"“

wHGYO0 | w1947 | 2462
A 2483580 | 2475.375 | 3.RO%
El 4566.691 | 4RG3 18S | 2842

Ti = 2400855191 (w, yO-33MTHAVRT
contidence lovel = ¥9.9872 o
ni = 0.1103373523 (i) SwasTHeso
conlidence level = 99.97 %

;= Frequency. (rud / xech

u'd, - Dumped frequency.(rud £ vec)
= Damging (%)

Table (6) : The numeri
modes of the

T 3IVIIVGI (e, ) USTAIISTI0N
¢onfidence level w 99,
ni = 0,2062230506 (
cantidenve fevel = Y9.81 %

V7 %
470637879

.

and experimental modal parnmetrs of the first fow
1ged-hinged GRP beam of volume fruction 45 %

Tuble 6.1 101670 Tuble 6.4 10790/0] .
n\ﬂdf No w andi n; % mode No wi wdi n; %
) [
] 839317 792,731 | 10,100 1 427.042 734.252| 11.805
2 3357.250 | 3217.402 | 3.549 2 3308.189 | 32146211 4.350
3 7553816 | 7345341 2.230 3 T443.429 | 7324,250] 2.400
4 13429.009 }12959.253 | 1.340 4 13232.763 | 12941.623} 1.700

i = 12.2618702 (w; 703841881622

confidence level = 99.82 %
ni = 0.1000745593 (i)- 14283739

coalidence jcvel » ¥9.82 %

i = 13.36235298 {w, y0- 705«:«7517

confidence lovel = 99,95 Th
ni = 0.1167480326 At1221058

confideace level = 99.95 %

Table 6.2 1073070} Tublc 6.5 [457-45 10}

moge No w anli ne o No wi wdi
i ti
i 831.929 | 792.423 | t0.507 ‘ 647.425 | 623.231 J14.621
2 3127.677 | 3304214} 3820 2 2589.677 | 2504.92) | 5.022
3 7481863 | 7204.232| 2.300 3 3826.782 | 5810234 | 2733
4 13310.742 | 12364.235] 1615 4 10358.717{ 9978721 { 2.2

Ni = 12.705645702 (w0, ) 0-616854804
confidence level = 99.90 %

ni = 0.1024333098
confidence level m 99.90 %

Ni=m 14.14408289 (wa,)-0.7075073403
confidence level = 99.54 %

confidence level = 99.53 %

“Table 6.3 i024570) “Fublc 6.6 {45101/45)
i No wi i " % node Na wi wdi ni %
5] g )
1 827870 | 79s0624{ L1100 397.278 | 36v.412 {19345
2 A3NLIN0 | II0A2I[ 4220 2 1580.135 | 1579413 | 6,293
3 T450.865 | 7422.372] 2340 k) 337554 | 3565.321 | 3478
4 13245.9%3 | 12932.421] t.650] 4 6356.533 ] 6243.413 | 2.620

Ni o 12,98 14341 (oo, )-UAYTHOT 208
confidence level » Y997 %
N o= 003684776 (i) 1IEIY 0N
confidence level = 99.97 %

wi = Frequency. (e 7 hee)

lnm = Danored frequency.quad £ see)
- Ditingring (%

PARPIETICET

7 %
A6TSARIVE

Ri = 14.9544474 4, )
contudence level = 9%
Moe LIRSIU00Y0E G
conlidence leveh = 99.67 %

Table (7) : The nuanerical and cxperimentz! modal parametrs of the llsrslkh.n_y

modes of the fixed-hinged GRP beum of

olume fraction 4

Tuble 7.3 {07070} Tanie 7.4 079010,
mode No wi undt n; % o No uh e w,
(0] iy
| 1310173 | 1210233 [ 10070 1291.997
2 4249.01% | 4196.204 | 3.400 2 4180935
3 #863.242 | 7672410 2.210 3 K735.091 239%
4 15160 092 J140os. 381 | 1290 4 1493834 Lexi.
i = 2379972844 (w, yU-TI4TVEI 14T Tim 346THRLITR (o) )OI 100N
L.nnﬁdcnce Tovel = 99,65 %, antidence level = 99.H6 %
= LYY LA0UGY (1) AasieonTs Tu = 01150149544 1)t 4ninTes?
sonﬁd:n:c levet = 99.70 % confidence tevel = Y9.95 %
Tube 7.2 1073010} Tavle 7.5 13454-4510;
mone No i oxh n, % o No 3 wnr
i )
l 1299.632 | 1130235 {10332 1 o] o~ sinfidae:
2 4240390 | 33vsaaa | 3970 2 2277500 a2 aa
3 8780800 | 7386210 2284 3 O8IBIP6 [ 2wt wsdf 2az
“ 15020.580 {11321 | 1600 4 FHOSA020 [ 103 211 2 Lo
ni = 23.9763658 (w, .41.7:..\799.\:,.«» Fom NS 96U IT0 ) 9 ot
confidence level = 99.80 ahdenue level = 9930
Wi = 0009072246 ()" § Mrassson .= 0E129TROUN0G 1))
confidence level = 99.92 % confidence level = 99,39 &
Tublc 2.3 (074570} Tanie 7.6 4510038
move No wi wdy e rante Nu i et e
) (2] o
' 1203291 } 1021243 | 1uumo | 620624
2 amiiie | dossaos | azis 1 2011248
3 §744.418 | 6859523 2343 3 3196308 | M2 ess | Jiame
4 14953.473 114500231 | 1020 4 175030 | 8e3lae | 2 ane

Niw 29.69637997 (o JOTRININI6IN
confidence level w 9993 %

ni = 0.1095308324 (i) }-38330USH
<onfidence lovel = 99.98 %

w = Frequency, (rud / sec)

Wi = Dumped frequency.(rud 7 sec)
ot = Gumping (%

s 3R 143634 (u, fOREI 462153
woafidence level = 99.22 %
o= 0173161734y gyt <
Goalidence fevel m 9941 %

"

Tablc (8) : The numerical and experimenial modal parameirs of the first foes
modes of the fixed-tixed GRP beam of volume fracuon <5 %

Tuble 3.1 [070/0] TaNe 8.4 10790/0)

mode No wi wdi n; % oxse No wi ooy n, %
&) [1})
1 1902.637 | 1824.301 [ 10,049 ' 187as1L | 19521211320
2 3244665 | 5123914 3239 2 5168.022{ 5109333} 4.226
3 10281.646 | 10391313 | 2.199 3 10131396 | 10123812} 2330
4 16996086 | 13992412 | 1.290 4 10747.712 15932 400] 1.670

i m 53.07860041 (w,) -0.8496440376
confidence level = 98.30 %
Ni = 0.097384472)8 (5)-1 440801284
confidence Jevel m 99.34'%

Ni = 84,681 34885 (w; )ORXINTHLIA2
coafidence tevel m 99.20 %
i =01 119917010 (i) | WANISS
coafusence tevel = 99.78 %

Tuble 8.2 16430/0j Tabkc B.5 145 1-4510)
“‘“‘(’;N° s i n% ke No wh e
N
] 1885.889 | 1693.621 | 10.200 1 1467.639 | 127922412328
2 3198.466 | 5187.322| 3.741 2 4045.570| a0c3914] 4422
3 10183781 10162911 ] 2.27G 3 1930947 | 70G53540) 2.55%
4 16846.403 |15932.440 1.5%0 < 13110248 {1219%.623| 1970

i = SB.93749276 (0,)-0.83500406401
confidence level = 99.64 %
ni =~ 0.09931071053 (i) 342162
conlidence level m 99.91 %

Ty = 8504971645 (o, JUNICRGI24
vonfidence level = 99,30 %
ne = 0.1 189287291 () ARSI
coafmlence tovel » 99,69 %

“Tauble B.3 [e14570) Tabl: 3.6 [4570745)
mode No i oxli 0% s No wi wn n %
G} iy
t 176,688 | 1798213 ] 10.920 ' ¥t 210 [16.343
2 5173.194 | 50242311 3999 2 2376234 | 5994
3 101415107 fror 16732 | 230 3 % S07ia) | 29
4 16763.454 [15042.394 | 1630 4 K4980 | TR 22 | 2370

N = T4.5T9SRTOS (w, 308719420253
cunfidenue level m 99.73 %
ni = 0.1072237864 () FT0I0ICR2
confidence lovel = 99.93 %

@, = Frequency, (rud / sech
5 = Dusoped fequency (rad £ sec)
Wi Dping (R

N = V6.OV53874 (o) 1 WRTS]
vantndenee fevel = Y93 %
31607317304 iy ARl
idence loved = 9902 %
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Fig. (1 a) : 3-layer beam model.

. Beam models
. Impact hammer with built-in force

transducer.

. Piezoclectric-accelerometer.
. Charge amplifier.

. Conditioning amplifier.

. Dual-channel signal analyzer.
. Computer.

. Printer.

»

- %l?[

4D

5D

6D

(Fig. 1 b) : Schematic block diagram of the measuring circuit.
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Fig. (2) : Quasihyperbolic relationship relating damping capacities 1ji with natural
frequencies, w; for LBC of various oricntations for different types of
fixations at V=15 %.
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Fig. (3) : Quasihyperbolic relationship relating damping capacities 1i with natural
frequencies, w; for LBC of various orientations for different types of
lixations at V=45 %.
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0 2200 4400 6600 8800 11000

Fig.' (4a) : Generalized quasihyperbolic relations between damping
capacities, 1,, and natural frequencies w,, for various
types of fixations at Vo= 15 %.
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Fig. (4b) : Generalized quasihyperbolic relations between damping
capacities, M, and natural frequencies w,, for various
types of fixations at Vy =45 %.
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Fig. (5) : Logarithmic forms relating damping capacities, n; with natural frequencies,

w; for LCB of various orientations for different types of fixations at V{ =

15 %.
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Damping capacity, -In ni

Damping capacity, -In ni
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Fig. (6) : Logarithmic forms relating damping capacities, 1ni with natural {requencies,
w; for LCB of various orientations for different types of fixations at V¢ =
45 %.
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Fig. (7) : Generalized logarthmic quasilinear forms relating
damping capacities, M. with natural frequencies ®; for
various types fixations at V¢ = 15 % (ref. Table 9).
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Fig. (8) : Generalized logarithmic quasilinear forms relating

damping capacities, M with natural frequencies w; for
various types of fixations at V¢ = 45 % (ref. Table 9).
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Fig. (9) : Logarithmic representation of dmping
loss factors in various natural modes.
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Fig. (10) : Equivalent damping capacity 0, % for
various degree of constraint (D) at V. =
45%.
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Fig. (11) : Equivalent damping capacity Neq % for
the degree of constraint (D) at V. =
15%.
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