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Abstract:

The present amalysis investigates non-Darcy forced convective heat transfer m a
cylindrical pipe flled with spherical beads saturated with non-Newtoonian drag reducing
fluid. The cylindrical pipe is subjected to either a uniform heat flux (UHF) or a constant
walt temperarure (CWT). [n wodeling the flow, both the energy equation and a modibed
momentum (Darcy-Forschheimer-Brinkman) equation are used, n which the variable
porosity, flow inertia, Brinkman viscous friction (non-Darcian effects) besides the
clongational viscosity of drag reducing fluids are taken into consideration and the fmite
difference technique is used The results are obtained for a non-Newtonian drag
parameter range of 0<wy<5000, and nondimeasional pressure gradient B up to 108, The
results show that the non-Newtowian character of drag reducing fluids bave a significant
influence on the entrance length, beat traosfer charactenstics and the temperature profiles.
[mportant results documenting and analyzing the bebavior of the eatrance length and the
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heat characteristics and its depcadence on the non-Newtonian drag parameter are also
reported. To examine the adequacy of the present heat transfer model. the goveming
equations were solved under conditions corresponding to those in Poulikakos and Renken
[20]. The companison of the caiculated Nn‘:fwilh that of Poulikakos and Renken [20] for
a=3 and 5 mm, w =0, 0.05€0<0.15 and 109<B<106 shows good agreement and validates
the presented heat transfer modei.

1. Introduction

In the area of convection heat transfer in porous inedia, the buik of the fiterature is
directed towards the understauding of heat transfer to only Newtonian fluids. Even the
compreliensive review articies of Shenoy [1.2] which essentially discuss heat transfer to
non Newtonian fluids show that at least until then there were no heat transfer studies
considering non-Newtonian fluid-saturated porous media. However, the status is quite
different now with large number of research papers having been published on heat transfer
in non-Newronian Ouid saturated porous medwim [3-14]. This is because of the envisaged
impoctance of understanding changes in heat transfer with non-Newtonian flow behavior
in the area of ceramic processing, enhanced oil recovery, polviner processing, chemicai
industries and fltration.

Chen and Chen [3] were the first to consider the simplest steady state free convection
flow of non-Newtonian power law fluids past an isothermal vertical flat plate embedded in
a porous medium. Forced- and natural convection boundary layer flow and heat transfer
of a Herschel-Bulkley-type non-Newtomian fuid past an isothermal semi-mfinite plate in
porous media was analyticaily explored by Wang and Tu [4]. Pascal and Pascal [5]
considered constant temperature and constant flux boundary layer flow of a Flerschel-
Buikley Buid along a heated vertical cylinder. The unsteady state solution of the case of 2
shear thinning fhud i the presence of a vicld stress was obtained by Pascal [6]. Wang et
al. [7] invesugated the mixed convection of non-Newtonian fluids from a vertical
isothermai plate embedded i a homogeneous porous medium. Buovancy-induced flow of
non-Newtonian fluids over a non-isothermai body of arbitrary shape in a fluid saturated
porous medium was treated by Nakayama and Koyama [8]. Combined free-and forced
convection heat transfer to power law fluid-saturated porous media was analyzed by
Nakayama and Shenoy [9] and similasity solutions were presented for vertical flat plates,
cones, horizontal cylinders and spheres.  Amiri et al. [10] studied analytically and
nunerically the buoyancy induced flows of power law fluids in a horizontally fluid
saturated porous layer subjected to constant heat flux. Yang and Wang {11] analyzed the
natural convection of a non-Newtaonian power-law lluid with or without yield stress about
a two-dimensional or axisymmetric body of arbitrary shape in a (luid saturated porous
medium,

All the above mentioned non-Newtonian fluid saturated porous media studies deal
with anly Darcy flow model. However. it is well known that the Darcy flow model
(which assumes proportionaiity between the velocity and pressure gradient) breaks down
when the inertia resistance hecomes comparable with the viscous resistance. For
Newtonian fluids, Forschhewmer proposed a square velocity term in addition to the
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Darcian velocity term to account for the inertia resistance effect. The modified form of
the Darcy-Forschheimer squation for non-Newtoman power law  fluids has been
developed recently by Shenoy [12].  Using the proposed equation for mathematically
describing non-Darcy Nows, the problen of steady state Darcy-Forschheimer watural,
forced. and mixed convection for non-Newtowian power law fuid-saturated porous
medium has been studied comprehensively by Shenoy [12] for the isothermal flat plate.
Nakayama and Shenoy [13] proposed a uniform transformation from which all possible
similarity solutions could be deduced for Darcy and Forschheimer convective flow of
power law fluids.

None of the studies mentioned above have treated porous media with high
permeability, wherein the viscous effects become important due to the frictional drag,
Vafia and Kim [15] comments that the DBrinkman-Forschheimer-extended Darcy
formulation. if not perfect. is the most commonly used equation in this regard. This
accounts for the boundary layer developmeut and nacroscopic shear stress. as well as
microscopic shear siress and microscopic inertial force. For Newtonian fluid saturated
porous media. studies which include the Brinkman term are those of [16-20] for confined
flows and those of [21-22] for external Mows. For non-Newtonian fluid saturated porous
media, Nakayama and Shenoy [14] reported (hat such non-Darcian flow studies which
take into cousideration both the TFarschheimer wertial, and the Brinkman viscous terms
were absent. In Nakayama and Sheuoy work [14], the Brinkman- Forschheimer extended
Darcy model is used for studying the flow confined within parallel wails subjected to
uniform heat flux and imimersed in a porous medium saturated with a non-Newtonian
power-law fluid.

The above relatively little studies for non-Newtonian fluid saturated porous media
were concermed with the power law and Flerschel-Bulkiet-type non-Newtonian fluids.
The flow of the drag reducing lype non-Newtouian fluid saturated porous media is not
considered. The convective flow through confined channel specially in cylindricai chasnel
is absent. The effect of porosity vanation near the wall was not taken into consideration,

The modified form of Brinkman-Forschheimer extended Darey model for the non-
Newtonian drag reducing fluids has been developed recently by El-Kady et al. [23]. In the
present work, the proposed model with the variable porosity near the wall is considered.
A detailed numerical analysis of forced convection through a cylindrical pipe filled with
sphienical beads exposed to constant wall temperature (CWT) and uniform heat flux
(UHF} is studied The effect of non-Newtonian drag reducing character on thermal
entrance  length. temperature vanation and heat fow characteristics have been
comprehensively discussed.

Z. Mathematical Formulation

The physical model considered is a honzontal cylindrical pipe filled wath porous
medium and is subjected to either uniform heat flux q,, on the outer surface or isothermal
wall of temperature T, as shown in Fig. |.  The porous medium is a packed bed
consisting of packed spheres. It is assunied that the fluid and the solid matrix are in local
themmai equiibriom.  The thermophysical properties of the sofid matrix and fluid are
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assumed to be constant. The problem has been studied assuming that the flow is steady,
incompressible, and hydrodynamically fully developed. The buoyancy force, pressure
work and wviscous dissipation are neglected. Under these assumptions, the energy
equation can be written as:

waT/ox = ag. Vr. 3/ ar{rdT/dr) (n

where u, T, o, are velocity in the axial dircction x, Temperature and effective thermal
diffusivity.

A modified form of x-momentum (Darcy-Foeschheimer-Brinkman) equation for
the flow of non-Newtonian drag reducing fluids in a porous medium i cylindncal
coordinates is derived by El Kady et al. (23] as;

I/ p[aPax]=v/r [8/0c(rdw/dn]-uv u/y-Aul-vu/f (2)

where, p, v are the Muid density and dynamic viscosity respectively. y aud A are the
permeability and the inertia coefficient (Forschheimer finction) of the porous medium,
which are dependent on the porosity “c™ and other geometrical parameters of the medium,
These parameters are given by Ergun [25] for packed beds of identical spherical particles
of diameter “d” and porosity “&” as;

v=d2e3/(175(1-£)]. A =175(1-¢)/[de3) 3)

The first, second, and third terms on the right hand side of Eq.(2) are expressions for
the houndary viscous drag, Darcy frictional drag which is responsible for the porous
stiucture and inertia drag.  The term (vaw/fl) on the right hand side of Eq. (3) is the
modification of the momentum equation to represent the elastic and non Newtouian
contribution in  the total resistance, where (3 is anather drag parameter that depends upon
the porous media’s geometry (¢ and g) as well as the non-Newtonian drag parameter
and is derived by El Kady et al. [23] as:

B =d2ed/{w(l-7)?) (4)

where v is the non-Newtonian drag parameter which depends upon the polymer type and
concentration and was derived by Rabic et al. {24] as;

w=N.(Cpn))" (5)

where C, [p] are the mass concentration of the polymer molecules, the intrinsic viscosity
and N and u are numerical constants. The values of the parameters (1), N and n are given
* in details in Rabie et at. [24].

The present model using Egs. (4) and (5) can be used for the flow of Newtonian
fuid (y = 0) as well as drag reducing fluids (w > 0) in porous media.

The porosity “£™ was assumed to vary exponentially from the wall according to the
following forn:

£=¢gg [1+ bexp(c [ty r] /d )] (6)
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where £ is the free stream porosity, and the empirical coustants b and ¢ were chosen
similar to that used by [17.20) among others .

The boundary conditions imposcd on the physicai system are unifarm with respect 1o
the axial coordinate, the compwational demain thus compnses of one half of the pipe. At
the channel inlet, the fluid has a uniform velocity uy, and wiiform temperature T;. At the
outer radius there is no slip condition wath either uniform heat flux q,, or constant wall
temperature T,,, i.e. the foilowing boundary conditions are applied:

T =T, u=uy at the inict section where x = x;j.
u=0at r=rq.du/dr=0atr=9

q = q,, for constant heat flux. or
T = T,, for constant wail temperature at r= r,

In order to nondimensioualize the governing equations (1) and (2) , the following
scalings are used:
U= ul(ulrg). R =v/rg D=dltg, X =(x~x )/(rg.Pryand 0 =(T-T;)/ 8,
where 0. is the charactesistic temperature
=(Qy, Ty /k,) for constant wall heat flux and
=(T,- T,} lor constant wall temperature,
ke is the effective thermal conductivity, and
Pr 1s the Prandtle number = v/o,
The energy and momentum Eqs. (1) and (2) can be transformed to nondimensional
fonn as:
U a0 /6X = UR [3 /R (R .60 /GR)] )]

U+C, U=T B+(I'/R).[G/2R (R 3U/BR )] (8)

where, C, = L75 D/ [(w+175)(1-¢&))],
= D23/ [(y+175) (1- £ )] and,
B is a nondimensionai pressure gradient = - dP/ dx . [ 1,3/ p v |

The important heat transfer characteristics in a channel flow are indicated by the
Nusselt number and the thermal entrance length which characterize the thermal layer
development.

Nusselt number at the wall can be derived in the dimensionless form as [20]:

Nu = 3T frlymr - 2 16 7 (Tyy ~To)] (9)

where the subscript w refers to the wall ofthe duct, T, is the mean fluid temperature
defined in the nomenclature in a manner similar to that for classicai fluid duct Mlows.

The thermal entrance length X, was defined as the distance between the entrance
of the pipe and the powit at which the mixed mean fluid temperature 0, and the Nusselt
number Nu become independent of the X-location, i.e. 30,,/0X = dNwW@X=0, and 0, can
be defined as:

Oy = (T TH(Ty Ty
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3. Method of Solution

The dimensionless goveming cquations were solved numerically utilizing a finite
difference scheme. The diffusion terms in the momentum and energy equations were
approximated by a central difference scheme. The Forschheimer nonlinear term is
linearized by guessing initial valued of the velocity field at ali the giid points, and the
nonlinear temn was written as the product of the unknown velocity and the guessed
velocity.  The dimensionless radius was discrtizied into 181 unequally spaced increments
to get an accurate resolution of the important near-wail region which is used to obtain the
momentum equation fite difference form. A very fine gnd size in the X direction near
the channel inlet and coarser downstream is used. The grid size at the inlet is 0.0001 and
mcreascs gradually in the downstream direction. This is done te capture the steep changes
in the temperature field near the entrance. Finite difference equation denved from the
momentum Eq. {(3) constitutes a set of simultaneous linear equations of 182 dimensions
and were solved by Gaussian elimination 10 yield the velocity field. Utiliang the velocity
distribution thus obtaimed, and after fuite differencing the energy equation (7) using an
implicit method, a system of tridingonal algebraic equations for the nodal temperature at
any given X position is obtained. ~ The TDMA (Thomas algorithm) is used to solve the
system of equations beginning at X=0 and marching downstream. Once the temperature
profile at each X position is known the local Nugselt number is determined from Eq. (9)
When the local gradient of Nusselt number and mixed mean fluid temperature 8, with
respect to X is less than 0.0001. a thermally FRilly developed flow is assumed and the
entrance length is obtained.

4, Results and Discussion
4.1 Model Validation

To examine the adequacy of the present heat transfer medel, to the knowledge of
the authors there are no heat (ransfer studies considenng non-Newtomian fluid flow
through saturated cylindrical porous media either expenmentally or theoretically,
therefore, the govering equations were sotved under conditions corresponding to those in
Poulikakos and Renken [20] during their work m the developing region for forced
convection of the Newtonian fluid flow in cylindrical porous media. The comparison of
the calculated Nuswith that of Poulikakos and Renken [20] are given in table | for sphere
diameters d =3 and Smm, w=0,005<D<0 t5and 102 <B £ 106 The agreement is
satisfactory, since the difference is, except in two cases, less than 2%, confirming the
adequacy of the presented heat transfer model.

4.2 Thermal Entrance Length

In order to establish the relative influence of the non-Newtaonian effects of the drag
reducing fluids on the forced convective heat transfer in  porous material filled pipes,
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numerical resuits have been obtained for @=3.2 mm, D=0.32, 0Syw<5000, 0 SSRe<10° and
B up to 107 for both the two houndary conditions, namely CWT and UHF.

Table | Comparison of the calcuiated Nuy with that of Poulikakos and Renken {20]

this work  Poulikakos and % difference

d D B Nuy Renken [20] Nuy in Nug
3 0.1 104 7366 735 0218
3 0.1  2.35x104 7.407 7.35 0.776
3 0.1 5x104 7377 735 0.367
3 0.1 7.5x10¢ 7416 735 0.898
3 01 103 7410 735 0.816
3 0.1 2.5x103 7569 7.35 0.258
3 0.1 5x103 7 385 7.35 0476
3 0.1  7.5x10° 7.332 7.35 0.245
3 0.1 106 7360 7.35 0.136
3 0.05 103 6.695 7.00 45
3 0.075 165 7.090 7.20 1.55
3 0.125 105 7.663 7.51 1.99
5 0.15 105 7.827 7.66 2.13
5 0.1 104 7695 76 1.25
5 0.1 2.5x104 7703 7.6 1.36
5 0.1 sx10¢ 7.730 7.6 1.71
5 0.1 75x104 7.681 7.6 1.07
5 0.1 105 7.685 76 .12
5 01  25xi03 7.702 16 1.34
5 0.1 5x103 7.664 76 0.84
5 0.1 75x10% 7.666 7.6 0.87
5 0.! 100 7.649 7.6 0.64

Figure 2 shows the dependence of the thermal entrance length on y for 05y <5000
and 105<BS10°® for both CWT and UHF. The entrance length for B=coust. is exactly the
same for both the two boundary conditions CWT and UHF which validates the presented
model.  With the increase of w the entrance length decreases because of the increase of
Re. Table 2 shows the decrease in the thermal entrance length due to the increase of
for B=10% An increase of w 1o 250 which corresponds for an example to an addition of
0.25 wppm of polyacrylamide causes reduction of the entrance length from 17 to 9 67.
This means a reduction of 43.1%, while an increase of w to 500 which means C=1 wppm
of polyacrylamide causes a decrease of the entrance length of 61.2% and an increase of
from 3000 to 5000 causes a reduction in X,0f2.2% TFigure 2 and table 2 show that the
entrance length decreases with the increase of w and its behavior takes 3 forms: ie.
sudden decrease of X, for w <500, transient decrease for 500Sw<3000 and nearly
constant (very small effect of ) for w 23000.
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Fig. 2 The thermal entrance length Xras Fig. 3 The thermal entrance length X3
a function of w and B for D=0.32, CWT a function of Reynolds number Re for O

and UHF =0.32, CWT and UHF
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Table 2 The influence of y on the thermal entrance length (at B =109), Nu
{at Re = 30. X=0 0i) and fully developed Nusselt number Nu[(al Re=100)

Re= 50. X=0 01 Re=100
w | C B=10% Q=< Tw™c Gu=C Tk
Xr % Nu % Nu % Nuj % | Nup | %

0 | o 17 ] 100 |8617]| 100 |68.21| 100 {12.07| 100 | 8.07 | 100

250 | 25| 967 | 569 | 9738 | 113 |76.31| 111.9 | 13.3]110.2] 8.67 | 1074
500 | 1 | 6.6 | 38.8 | 103.43| (20 180.47| 1)8 {13.88 115 | 893 | 110.7
1000 4 | 4.1 | 24.1 1111.03|12885(85.46| 125.3 [14.49 120 | 9.19 | 113.9
2000 17 | 2.2 | 12.9 | 119.J2[138.24|90.33| 132.43]15.02| 124.4| 94 | 1165
3000 37 | 1.33 | 7.82 | 124.02| 143.9 193 07| 136.47) 153]126.8] 952 | 118
4000 | 70 | 1.1 | 6.47 | 127.6 |148.08(94.97 | 139.23 15 46| [28.1| 9.57 | 1)8.6
5000 | 100 095 | 559 |130.13[151.02/96.19|141.02015.57] 129 | 9.62 | 119.2

Figure 3 pertains a heat transfer result of engincening mterest, namely, the dependence
of the thermal entrance length X, on Reynolds mimber. All the cases presented on Fig. 2
which present the two boundary conditions for 0 <y < 5000, 10% < B <10% and 0.5< Res
3x107, are represented in Tig. 3. All these pownts collapse on one curve giving the linear
relation in the Jogarithmic graph of X and Re as follows:
X, =01 Re (10)

Defining Graetz number based on the pipe diameter Gz = (D/x).Pr Re, this relation wall
be transionmed to give the reciprocal of Graetz No. at the entrance length x,for the flow
as follows:

Gz"'=005 vy

Equations 10 and |1 mean that the fuily developed conditions are reached for
[(D)Re.Pr] = 0.05, which is also obtained by El Kady [18] for the Newtonian fluid flow
in the porous media and can be obtained from the results of Kays et al {26] for the pure
laminar fluid Mlow. ie. this relavon is also valid for the noa-Newtonian drag reducing fluid
Now in the porous media,

4.3 Development of Heat Transfer

The development of heat transfer of drag reducing fluid low in a porous mediuin
is investigated by plotting local values of Nusselt numiber as a function of X according to
Eq. (9). The results for the thermal entry region and the fully developed region are shown
m Figs. 4 to 7 for different values of Revitolds number and pressure gradients B for both
the two boundary conditions CWT and UHF  As it was expected, Nu decreases with the
increase of X in the entrauce region to their asymptotic fully developed value Because
the thermal boundary layer thickness is zero at the tube entrance, the convection
coefficient is extremely large and the Nusselt number are in principle, infinite at X=0.
However. Nu decreases rapidly as the thermal boundary layer develops, until the constant
value associated with the fully developed conditions is reached.
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Fig. 4a.b Effect of drag parameter y on the focal Nu for Re = 50, D =032
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Fig. 5ab Effect of drag pararueter v on the local Nu for B =10%, D =0 32
a- UHF; b- CWT
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Fig. 6 The fully developed Nus as a
function of v and Reynolds number Re
for D=0.32, CWT and UHF
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Fig. 7 The Rilly developed Nuy as 2
function of  and the pressure drop B for
D=032, CWT and UHF
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Fig 8ab  Temperature distribution across the pipe half width at several X
Jocations for y= 500, Re = 50, B =10 and D =0.32. a: UHF, b: CWT
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Figure 4 represents the Nusselt number variation in the developing and fully developed
regions for different vaiues of w ranging from 0 to 5000 and Re = 50 The cases (a) and
(b) ace for UHF and CWT respectively. Both Fig. 4 and table 2 show that the increase of
y Lo $00 causes an increase of Nu at X=0.01 of about 18% for the case of CWT and
about 20% for UHF, while the increase of yw from 3000 to 5000 increases the entrance
length by only 3.4% for CWT and about 4.9% for UHF. [t is observed that the local
Nusselt number in the entire developing and developed regions increases with the ncrease
of 1w until w=3000. For constant Re, increcasing i increases B and increases the
chauneling effect (23], which in tums vields to higher values of Nusselt number
throughout the developmg and fully developed regions. However, for w 2 3000 no
significant influence for w appears.

Figure S represents the Nusselt number vanation in the thermal entry and the fully
developed regions for different values of w at 8=10°. The cases (a) and (b) are for UHF
and CWT respectively. For B=vonst. increasing \p decreases Re which means slower flow
and increases the channeling effect (23] yeldmg to lower values of Nu throughout the
thermal entry region and higher values ofNufin the fully developed region.

The fully developed values of Nuy are represented in Figs. 6 and 7 for both the
boundary conditions, for 02yw<5000 and Re=50, 100, SO0 and 1000 in Fig. 6 and for
B=10%, 105 i07and 108 in Fig. 7. Table 2 shows for the case of UHF that the increase of
w to 500 which corresponds for an exampie to | wppm of poiyacrylamide causes an
ncrease ol‘NllfoFabout [ 5%, while the mcrease of w from 500 to 1000 {C=1 to 4 wppm)
gives an increase of Nup of about 4,4% and the increase from 3000 to 5000 (C=37-100
wppm) causes an increase of Nugaf orly 1.7%. Figures 6 and 7 and Table 2 observe that
in 2l the represented cases thiree types of behavior for Nuywith the increase of w are
exhibited, namely, sham increase in Nug for y <500 due to the sharp decrease of the
channeling velocity, transient increase for 500<w<3000 due to the lower rate oflhe
channeling velocity increase and nearly constant for y 23000 for the very tow rate of
channeling velocity increase [23]. For w=const. Nusdecreases with the increase of either
Reor B Nuf for the case of CWT is as expected less than it at the UHF case.

4.4 Temperature Variation

Figure § shows the nondimensional temperature distmbution across the pipe half
width at several downstream locations X =0.1.2, 3.5, 5, 7.5, 10, 15,20 and 25 where
the entrance length Xp=5,4=500. Re=50and B = 105 The cases (a) and (b) are for
UHF and CWT respectively. Typical temperature profiles are shown and characterized by
a steep gradient at the wall owing to the effects of wall channefing.

Figure 9 presents the vanation of the teiperature across the pipe haif widih ata
location X = 5, Re=30 and 0 <w < 5000 foc both cases of UHF and CWT. As presented
in table 3, AB (the difference between the wall temperature and the core temperature)
decreases with the increase of w, which means faster propagation of the heating effect of
the walls. This is because of the increase of thie channeling effects with the increase of
for constant Re [23].
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Table 3 Dependence of AB (the difference between the wall temperature
and the core temperature) and A, on y for Re= 50, X=X /= 3.

yr C Ty~ =c Q¢ _Tyme

A0 %o A8 % A8 Yo A8 %

0| 0 04247 100 04004 | 100 317314} 100 |1.5503| 100
| J03958| 932 | 0382 | 95.4 | 1.7764 | 102.6 [ 1.5851 | 102.2

1000 | 4 03909 { 920 (03768 941 }1.7887[ 1031 [ 15948 1029
3000 | 37 03791 | 893 [03711| 92.7 [ 1.8038 [ 104.2 [ 1.6073 [ 103.7

5000 | 100 {0.3763 | 88.6 | 03691 | 922 | 1.8087 | 104.5 | 1.6113 | 103.9

Figures 10 and 1 present the temperature variation of across the pipe half width at
X=5.10 and I5. B= 10% and 0<w<5000. Figure 10 shows the case of UHF while Fig. |}
shows the case of CWT. With the increase of \p Reynolds number decreases sharply but
the channeling effect increases [23] and A® (the difference between the wall temperature
and the core temperature) decreases which means faster propagation of the heating effect
of the walls, this is mamly because of the increase of the channeling effects [23].

The influence of the nou-Newtounian drag reducing fluids on the mixed mean fluid
temperature 6, is shown in Fig. 12 for Re=50 and X=5. From the profiles shown. it is
evident that the increase of w leads to an increase of 6, near the wall and m the core
region for w<3000. However, for w = 3000 no remarkable change in the profiles of 8,
which indicates negligible influence after w=3000 Table 3 presents A, (the difference
of B, between the core and the wall) with the change of \v. AB,, increases with the
mcrease of w wntil y=3000 and no remarkable changes for w>3000. Fig. 12 shows also
that 9,, near the wall for the UHF is higher than it for the CWT, while it is less in the core
region for the UHF than it for the CWT.

5. Conclusions

The effects of the elovgational viscosity of the non-Newtonian drag reducing fluids
on the forced convection heat transfer parameters such as the thermal entrance length,
temperature profiles and heat transfer Nusselt number were studied for CWT and UHF
boundary conditions. The present coaclusions was obtained:

« For constant B fluids with very low values of the drag paramter \ can cause high
reduction m the entrance length. The entrance length decreases with the increase of
non-Newtonian drag parameter w and its behavior takes 3 forms, sudden decrease of
Xy for w <500 transient decrease for 500<y <3000 and nearly constant for y 23000

e X, increases linearly with Re and gives the same correlation that obtained for the pure
fluid flow and Newtoman fluid flow in porous media as:

Xp= 0.1 Re, Gz =0.05

» Fluids with very low vaiues of the drag paramter ys cause a high change in the local
Nusselt number in the entire developing and developed regions.
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» lo the developing region, increasing w at constant Re increases B which gives higher
values of Nu. For coustant B, jucreasmg w decreases Re which yields 1o lower values
of Nu undil w = 3000. However, for y > 3000 no significant mfluence for \ appears.

* In the fully developed region, three types of behavior for Nu,with the ipcrease of  are
exhibited, sharp increase for <500, traosient mcrease for 300<w<3000 and nearly
coastant for w=3000. Forwy = const. Nu_(decmm with the increase of either Re or B

+ With the increase of w, AD (the difference between the wall temperature and the core
tewperature) decreases, which weans faster propagation of the heating effect of the
walls to the core region due to the increase of the channeling effects.

» The increase of w leads to an increase of the mixed mean fluid temperature 6, aear the
wall and o the core region for y <3000, However, for w = 3000 no remarkable
change m the profiles of 0, which indicates negligible influence after w=3000. 8, near
the wall for the UHF is higher thaa it for the CWT, while it is less in the core region for
the UHF than it for the CWT.

6. Nomenclature

A Forschheuner inertia coefficient of the porous medium, equation (2), w!
b, ¢ coustants, equation (6)

B nondimensional pressure gradient, equation (8)

C concentration of the polymer molecules equation (5); in wppm
C, diroensionless coefficients, equation (8)

da.D sphere diameter, m, dimensionless sphere diameter = diry

Gz Graetz number based on the pipe diameter Gz = (D/x).Pr.Re

ke effective thermal conductivity, kW/m K

o, N numerical constants, equation (5)

Nu Nusselt pumber, equation (9)

Nuy Nusselt number at the thermal entrance leogth

P pressure, Pa

Pr Prandtle number = v/t

Quw mean wall beat flux. kW/m?

r radial coordinate, m

o pipe radius, m

R dimensionless radial coordinate

Re - Reynolds number based on the tube diameter = 2 up,.ro/v

T temperature, K

T; temperature at the inlet section x =x, , K

T mean temperature. T, = (OlropuTrdr)/[OImp urdr]
T wall teoperature, K

u Beld velocities in the x direction, m/s

Uy, local averaged fluid velocity wcluding the solid and fluid regions, m/s
U non-dimensional field velocity in the X direction

X axial coordinate
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channel nlet axal distauce .

dimensionless distances m the x axis = {x - x}) / (rg.Pv)
thermal enry leugth

effective thermal diffusivity of the porous medium, m?/s
non-Newtonian drag parameter, equation (2).
permeability of the porous layer, equation (2), m?
dimensionless coefficients, equation (8)

drag parameter, equation (4),

porosity of the porous medium

free-stream porosity

non-dimensional temperature = (T - T,)/ 0,
characteristic temperature

mvariant mixed mean temperature = (T T )/ (T Tr)
MrNSIC viscosity

Kinematic viscosity of the fluid, m?/s

Duid density, kg/m?
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