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ABSTRACT

In this paper we introduce the concept of TP-rarefied spaces
and investigate some of its dimensional properties. We prove that
dim Y < dim X for any closed o—totally paracompact subspace Y
of a TP-rarefied space X. Moreover, we study some defects of
o—totally paracompact spaces.

INTRODUCTION

This aim of this paper is to study the relation between the
dimension of the spaces and the dimension of their quassi components.
This connection is given in the works of A. Lekek [5] and T. Nishura

[7] for separable metric spaces. We extend these results over the limit

of metrizable spaces.

BASIC DEFINITIONS AND NOTATIONS

The space X is strongly paracompact if every open cover of the

space X has a star-finite open refinement. The space X is completely

paracompact [4,9] if for every open cover U of the space X there exists

a sequence V{,V,, ... of star finite open covers of X such that the

union il:-Jl Vi contains a refinement of U. Thespace X is called

o—totally paracompact (briefly o-t.p.) [6] if for every base R for
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On the dimension

the space X there exists a o—locally finite open cover ¥ of X such
that for each V€ y one can find Ue R such that VcU and
Fr VcFr U. Thesymbol Fr U denotes the boundary of a set U in X.
Every o©.t.p. space is paracompact and a completely paracompact

space is ©.t. paracompact.

As usual by dim X and ind X we denote the covering dimension
and the small inductive dimension respectively. N will denote the set of
natural numbers. The local dimension loc dim X of a space X is
defined as the least integer n such that there exists an open cover {U},}
of X with each dim [U}L] <n, or if there is no such integer, loc dim =
= oo, The symbol CIU denotes the closure of a set U in X and when
the closure of U is taken with respect to any space Y we denote it
by CIyU. Let f:X — Y be a mapping , then dim f = sup{dim { 1(y) :
ye Y}

The family {H_:a € A} is called hereditarily conservative if
Cl(u {La rae A)) =u{Cl La :a € A} for every family {La c H,:
a € A}. The family @ is ), — conseruative if @ = U {®, :n€ N},
where @, is hereditarily conservative and closed in X, (U{L:L €
e h)N(U{H:He wi}) = & for i#j and foreveryn>1 the
family @, is hereditarily conservative and closed in X\ U{L :Le U
U {w;:i<n-1}}. The space X is called L—paracompact if every
open cover of X has ) ,—conservative refinement. M.M. Coban [2,3]

shows that Every L—paracompact space satisfies the condition:
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(*) If Z is aclosed subspace of the space X, then dimZ =
= loc dim Z.

All spaces are considered to be normal unless stated otherwise.

TP-RAREFIED SPACES

Definition 2.1. A space X is called TP~rarefied if for every
nonempty closed subspace Y X there exists a nonempty open set U

such that Cl U is a union of a countable number of closed o—totally

paracompact subspaces.

Theorem 2.2. If the space X is TP-rarefied and satisfies the
condition (*) , then dim X =sup{dim Y : Yisclosedin X and Y is

O.t.p. space}

Proof: Let n = sup{dim Y : Yisclosed in X and Y is G.t.p.
space} and Z = U{U:U is openin X and dim U < n}. It is clear that
dimX >n. If Y& Z and Y is closed in X, then by the condition (*)
we have dimY = locdimY < locdimZ <n. We shall prove that
Z = X.Then dim X < n and the theorem is proved.Assume that Z # -
# X. Then the set X\ Z is closed and since X is TP—rarefied, then
there exists a nonempty open in X\Zset U such that ClU is
o-totally paracompact. The set Z U U is open in X. Consider a point

xe€Uand Vis anopenin X such that x€e VcY=ClVc ZU U.

. Then we have,

1. Y\Z < U and the set Y\Z is closed in X and o—totally

paracompact.
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2. dim(Y\Z)<n,
3. KFHc YNZ and H is closed inY, thenH <« Z and
dimH= locdimH< locdimZ <n.

By lemma 3.1.6 in [4] we have dim Y < dim (Y \ Z) + sup
{dmH:HisclosedinYand HCZ} <n. Then x € VcZ and this
contradicts the assumption that x ¢ Z. From the contradiction we see

that Z =X and the theorem is proved.

Corollary 2.3. If the space X is TP-rarefied and L—-

paracompact, then dim X = sup{dim Y : Y isclosedin X and Y is
G—t.p. space}

Theorem 2.4. If for a 6—totally paracompact space X there
exists an open base R such that dimFr U <n—1forallUe R, then
dim X <n.

Proof: Let A and B be two disjoint closed sets in X. Let

R, ={UeR:ANCIU=@ or BN ClU =2} Clearly Ry is

a base for the space X. Then there exist discrete open systems;

rm={{UI::aeAm}:meN}and {Vg:eililzoteAm,meN}

in X such that
Lr=0 {rm :m € N} is open cover of the space X.

m m m m
2. uacVa and FrUacFrVa.

Let Ay = {oeA :AnQULz0}, U_=uU
u{Ug:aeA Jad v_ =u{Uy:aeA \A, .
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By the construction we have ClU N ClV_ = &, FrU =uU
U{ FUT :ae A, JandFrV_ = U {Fr Uy :oeA \ A }.
AlsodimFrUm <n~1 and dimFrV_< n-1 Let
Gm=Um\U{C1Vi:i_<_m}, Hm=Vm\U{CIUi:i5m),
G =uU({G,:meN}, and H =U{H, : me N}
Then AcG, BcH and GNnH= @. Also X\(GUH) c U
U{Fer uFer:me N} . Then dim X\(GUH))<n—~1. By

Lemma 3.1.27 in [4] we have dim X <n.

Corollary 2.4. If the space X is G~totally paracompact, then

dimX < ind X.

Corollary 2.5. If the space X is TP~rarefied and satpsfies the

condition (*) , then dim X < ind X.

Corollary 2.6. If the space X is L—paracompact and TP-
rarefied, then dim X < ind X.

INDUCTIVE COMPACTNESS AND
DEFECTS OF SPACES

Inductive dimensions are introduced by a class of spaces and
investigated in [1,8].

Let B-— be a class of spaces. For any space X we define,

(1) B-IndX=-1 and B-ind X =~1 ifXe B

(2) Ifn>0, then B-Ind X < n, if for every closed set F in X
and an open set U in X such that U o F there exists an open set V in X
suchthat FcVc Uand B-Ind FrV < n-1.
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(3) Ifn>0, then B—ind X < n, if for every point x in X and
every neighbourhood O, of the point x there exists a neighbourhood
Vx of x such that Vx c OX and B—ind Fr V. < n-L

If K is the class of all compact spaces, then K-ind X =cmp X
and K-Ind X = Cmp X are called the inductive compactness of the

space X,

Let dimgz X = sup{dim F:F is closed subset of X and
Fe B}, and dimy X = sup{dim F: F is compact subset of X}.

By Lemma 3.1.27 in [4] we have .

Corollary 3.1. For every space X we have dim X < B-Ind X+
+dimg X + 1, and dim X < Cmp X + dimy X + 1.

By proposition 2.4 we have.

Corollary 3.2. If the space X satisfies one of the following:

1. The space X is ¢ —totally paracompact.

2. The space X is TP—rarefied and L—paracompact.

3. The space X is TP-rarefied and satisfies the condition (*)
,then dimX < B-ind X + dim.BX+ 1 and dimX < Cmp X +

+dimKX+1

Example 3.3. let X be a méuic space such that dim X =
=n22 and dim F =0 for every compact subset F of the space X.

In the space X X I, where [ =[0,1] combine one point a witha set
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X X {1} . The resulting space is denoted by Z. Let f: X XI — Zbe
a natural projection. If z€ Z and z #a, then the neighbourhood O,
of the point z in Z is as in the space X X L If z = a, then the
neighbourhood of a has the form O, = fX x (1-¢, 1]), € >0. The
space X is metrizable, linearly connected, n <dimZ <n+1 and
dimy Z=1 . Thus dim Z— - dimy Z can be arbitrarily a large number

even in the class of separable metric spaces.

By Q(x,X) we denote a quasi component of a point x in the
space X. There exists a continuous mapping gy, : X — X | Q where
qX(x)-: Q(x, X). For every point x € X on X | Q we consider the
topology generateed by a base {Uc X/Q : the set qX'l(U ) is open—
closed in X}. The nspace X | Q is called quasi component space and

Qx is the natural projection onto XI Q.

By Co(X) we denote the family of all compactifications of the
space X. Also C(x,X) is the connected component of a point x in the

space X. If Y ¢ X, then we define

rdyY =sup{dimFFcY and Fisclosedin X} .
Also for the space X we define the following defects,
def X = inf{dim(CX\X) : CX e Co(X)}
and Def X = inf{rd~y (CX\X): CX € Co(X)}.

The quasi dimension and quasi locally dimension of the space X

are defined as follows;
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QdimX = sup {dim Q (x,X) : xe Xj}
and
Qloc dim X = sup {loc dim Q (x,X): x € X}
Lemma 3.4. If the space X is locally compact, then loc dim X<

<dims X = sup{dim C(x,X) : x € X}.

Proof: Let x be a point of the space X and U be a
neighbourhood of the point x such that F = Cl U is compact. Then
dim F=Qdim F =dimC F <dimg X. Then loc dim X < dim X.

Consider the following condition:

(**) For the space X there exists bX € Co(X) such tthat

Q(x,X) =X N Q(x,bX) for every x € X.

Lemma 3.5. If the space X satisfies the condition (**) and
Q, X) is locally compact for every x € X, then dimbX =
= rde X\ X) + Q loc dim X.

Proof: Lety € bX be any point, where bX is the
compactification of the sapce X stated in the condition (*%*). If
Q(y,bX) < bX\X, then dim Q(y,bX) < <rd,y (bX\X). Let us
suppose that X M Q(y, bX) # @ and y € X. The set Q (y,X) is
locally compact and open in Q (y, bX). Then dim Q (y, bX) =
= dim (Q(y, bX)\ Q (y, X)) +loc dim Q (y,X) < rdpy (bX\ X) +Q
loc dim X. For the mapping qpx : bX — bX1Q we have dim
qpx = Qdim bX and dim bX/Q=0. Thus dimqbX=QdimbX=
=rdp,x (bX\X) + Q loc dim X. and the proof is complete.
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In the following two theorems all considered spaces are compact.

Theorem 3.6, If any compactification of a G.t.p. space X is

TP-rarefied and I—paracompact, then dim X <def X + Qdim X + 1

Proof: Let bX be a compactification of the space X such
that def X =dim (bX \X).Letx € X be any point. Then dim Q
(x, bX) < dim Q(x,X) + + dim Q (x,bX\X) +1 < def X+ Q dim
X+1. Thus Qdim bX < def X + Qdim X +1. Hence dim bX <
<def X +Qdim X + 1. By Corollary 2.3. we have dim X < def X +
+QdimX +1

Theorem 3.7. Suppose that any compactification of a o—t.p.
space is TP~rarefied and L-paracompact. Also if the space X satisfies

the condition (**) and Q(x, X) is locally compact for every point

x € X, then dim X £ Q dim X + Def X.

Proof: By Lemma 3.6 there exists bXe Co(X) such that

dim bX = rdy(bX\ X)+ Q dim X and Def X = rdy, 5 (bX \ X).
Then dim bX =Def X + Q dim X . By Corollary 2.3. we have dim X<
< DefX + Qdim X.

Remark 3.8. Theorems 3.6. and 3.7 are given in [5,7] for

separable metric spaces.
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