

ولع لاعف

العراري ماه

:Menoufia
:Electronic Engineering
:Physics and Engineering
Mathematics
:Preparatory year
:Mathematics (1)
:PEM (1)

Date	: 25/ 12/2019
Time	: 3 Hours
No. of page	s: 2 pages
Full Mark	: 100 Marks
Exam	: Final Exam
Examiner	Prof. Dr. Ramadan

Examiner : Prof. Dr. Ramadan Dr. Hany El-gohary

Part 1

Answer all the following questions:

Question No 1:

(15 Marks)

- a) Solve the inequality |3x 5| |2x + 3| > 0.
- b) Find the inverse of $y = \frac{x}{4} + 3$.
- c) Discuss the continuity of $f(x) = \frac{x^2 2}{|x 2|}$.

Question No 2:

(15 Marks)

- a) Graph the function $y = x^3 3x^2$.
- b) Find $\frac{dy}{dx}$ if $y = \log_{x} (x^{2} + 1)$.
- c) Prove that $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Question No 3:

(20 Marks)

- a) Evaluate (i) $\lim_{x \to 1} \frac{\cos\left(\frac{\pi x}{2}\right)}{1-x}$, (ii) $\frac{d}{dx} \left(\tan^{-1} \sqrt{x}\right)^3$
- b) Prove that $\sec^{-1} x = \cos^{-1} \left(\frac{1}{x}\right)$, and obtain the logarithmic expression for $\sinh^{-1} x$.
- c) Find the Maclaurin's series for $f(x) = \sin x$ and show that it represents f for all real x.

Answer all the following questions:

Question No 1: (30 Marks)

a) Find a formula for the *nth* term of the sequences and find $\lim_{n\to\infty} a_n$ (Converges

or diverges). (9 Marks)

(1)
$$-\frac{4}{2}$$
, $-\frac{7}{5}$, $-\frac{10}{8}$, $-\frac{13}{11}$,...
(2) $-\frac{3}{5}$, 0, $\frac{5}{9}$, $\frac{12}{11}$,...
(3) $(\sqrt{2}-1)$, $2(\sqrt{5}-2)$, $3(\sqrt{10}-3)$, $4(\sqrt{17}-4)$,...

- b) Find a formula for the nth partial sum of each series and use it to find the series sum if the series converges. (6 Marks)
- (1) $2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \cdots$ (2) $\frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \frac{1}{5.6} + \cdots$ (9 Marks)

(1)
$$\sum_{n=1}^{\infty} \frac{2n}{n^2 + 2n + 1}$$
 (2) $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{1}{n \ln^2(n)}$ (3) $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$

d) Find the series radius and interval of convergence. For what values of x does the series converge and absolutely or conditionally. (6 Marks)

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (x+2)^n}{n \ 2^n}$$

Question No 2: (20 Marks)

- a) A concrete bridge is designed with an arch in the shape of a Parabola. The road over the bridge is 120 feet long and the maximum height of the arch is 50 feet. Write an equation for the parabolic arch. (6 Marks)
- b) Prove that the locus of the point from which we can draw perpendicular tangents to the Parabola $y^2 = 4ax$ is the directrix. (4 Marks)
- c) Prove that this equation is a Hyperbola section and find vertices, foci, directrices, Asymptotes and focal length. (10 Marks)

$$9x^2 - 2y^2 - 18x - 4y + 25 = 0$$
