Sci. J. Fac. Monoufia Univ. vol. IV (1990) 309-322

STEADY STATE OF AVAILABILITY OF MULTIPLEX SYSTEMS

Abdel-Mohsen M. Metwally ${ }^{*}$, M.O. Shaker**, A.E.A. Dessofy ${ }^{* *}$, and M.A. E[-Damcese**

* Nuclear Engineering Department, Faculty of Engineering, Alexandria University
${ }^{* *}$ Mathematics Department, Faculty of Science, Tanta University.

ABSTRACT

In most practical applications, the constituent componenets or a multiplex system are usually unidentical: The present work study the solutions of the limiting values of transition probabilities to get the long-term availability for a multiplex system of n.repairable identicall unidentical components. Availability formulae for some selected configurations of definite number of components are achieved,

1-INTRODUCTION

In Markovian processes where it is possible to go from one state to another over a large long period of time, it can easily be shown that the limit $P_{j}=\lim P_{j}(t) \quad$ always
$t \rightarrow \infty$
exists $[1]$, where $p_{j}(t)$ is the occurrence probability of j failures at time t

One can get the steady state (long-term) solutions by simply setting all the derivatives $P_{j}(t)$ equal zero, and hence the system of differential equations will be reduced to an equivalent system of algebraic equations. To solve these equations of n - components multiplex system, one can make use of:

$$
\begin{equation*}
\sum_{j=0}^{2^{n}-1} p_{j}=1 \tag{1}
\end{equation*}
$$

Steady state of availability.
All previous works in this respect deal with identical components which is not the case in most practical applications. The present work gives the transition matrix and solves all resulting algebraic equations to get the longterm availability, with repair, for n-unidentical components. The case of identical components is obtained as a special case.

2 -MARKOV STATE DEFINITION

To fully describle all possible system-states over a large long period of time, one should define the following terms [2]:

* Total number of states $=\sum_{i=0}^{2^{n}-1} S_{i}$
* Operating components $=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots \ldots, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$
* Non operating components $=\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3} \ldots \ldots, \bar{x}_{n-1}, \bar{x}_{n}\right)$

The following are some samples of the states under the previous notations :

$$
\begin{gathered}
S_{0}=x_{1} x_{2} x_{3} \ldots x_{n-1} x_{n} \quad, \quad S_{1}=\bar{x}_{1} x_{2} x_{3} \ldots x_{n-1} x_{n} \\
S_{2}=x_{1} \bar{x}_{2} x_{3} \ldots x_{n-1} x_{n} \quad, \quad S_{3}=x_{1} x_{2} \bar{x}_{3} \ldots x_{n-1} x_{n} \\
\vdots \\
S_{2^{n}-2}=x_{1} \bar{x}_{2} \bar{x}_{3} \ldots \bar{x}_{n-1} \bar{x}_{n}, S_{2^{n}-1}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \ldots \bar{x}_{n-1} \bar{x}_{n}
\end{gathered}
$$

"- The state $S_{2^{n}-2}$ for example, is the state where x_{1} is, only operating while the rest of components are down with. only one element can be under repair at a time.

Abdel-Mohsen M. Metwally et. al.,
The set of all system-states (Ω) is partitioned into the set of operational system-states (U) and the set of fialed system-states(D). One must write S $\varepsilon \mathrm{U}$ when the system is operational [3].

Syatom availability over a large long period of time is $A(\infty)=\operatorname{Pr}(S \varepsilon U$ wer u large long period of time $\mid S \varepsilon \Omega$ at $t=0$].

3- BASIC ASSUMPTIONS

The solutions will be carried out under the following assumptions [4] :
i - The transition probability $P_{i, j}$ from S_{i} to S_{j} over a large long period of time, which includes exactly one failing element, is $\lambda_{i} \cdot \lambda_{i}$ is the failure rate of the ith components $\mathrm{i}=1,2$, \qquad ..n.
ii - The transition probability $P_{i, j}$ from S_{i} to S_{j} over a large long period of time, which includes exactly one repair completion, is $\mu_{i} . \mu_{i}$ is the repair rate of the -ith components, $\mathbf{i}=1,2, \ldots \ldots \ldots . . ., \mathrm{n}$.
iii -The transition probability $P_{i, j}$ from S_{i} to S_{j} over a large long period of time, in which the number of failure and repair completions exceeds one, is zero.

4. MATHEMATICAL MODEL

A. Multiplex System of n-unidentical Components

The transition probablility matrix for availability with repair of n unidentical components is given by :

Steady state of availability.

We may write the following system of 2^{n} aigebraic equations are :

$$
\begin{aligned}
& 0=-\left(\sum_{i=1}^{n} \lambda_{i}\right) p_{0}+\sum_{i=1}^{n \prime} \mu_{i} p_{i} \quad \text { (one equation) } \\
& 0=\lambda_{j} P_{o}-\left[\sum_{i=1}^{n} \lambda_{i}-\lambda_{j}+\mu_{j}\right] P_{j}+\sum_{\ell=1}^{n-1} \mu_{j, \ell} P_{j, \ell} ; \quad \text { (n-equations)(3.b) } \\
& j=1,2, \ldots, n \\
& 0=\sum_{k=1}^{m} \lambda_{j, k} P_{j, k}-\left[\sum_{\ell=1}^{n-m} \lambda_{j, \ell}+\sum_{k=1}^{m} u_{j, \bar{k}}\right] P_{j}+\sum_{\ell=1}^{n-m} \mu_{j, \ell} P_{j, \bar{\ell}} . \\
& \text { - (} \left.2^{n}-(n+1) \text { equations }\right)(3 . c) \\
& m=2,3,4, \ldots .11 \\
& j=\left[\sum_{i=1}^{m-1}\binom{n}{i}\right]+1, \ldots, \sum_{i=1}^{m}\binom{n}{i}
\end{aligned}
$$

where
$\lambda_{j, \bar{k}} \cdots u_{j, \bar{k}} \equiv$ failure rate, repair rate of kth bad component in state S_{j}
$\lambda_{j, \ell}, u_{j, \ell} \equiv$ failure rate, repair rate of th good component in state S_{j}
$P_{j, k} \quad \begin{aligned} & \text { state probability } S_{j} \text { when the } k \text { th } \text { bad component is replaced } \\ & \quad \text { by a good one }\end{aligned}$

Abdel-Mohsen M. Metwally et. al.,
$\begin{aligned} P_{j, \downarrow} \quad & \text { state probability } S_{j} \text { when the } 2 \text { th good component is } \\ & \text { replaced by a bad one }\end{aligned}$
n

* total number of components
m number of bad components in the state S_{j}
and the solutions are :

$$
\left.P_{j}=\prod_{i=1}^{m} \frac{\lambda_{j, k}}{\mu_{j, k}}\right] P_{o} \quad, \quad \begin{align*}
& j=1,2, \ldots, 2^{n}-1 \tag{4.a}\\
& m=1,2, \ldots, n
\end{align*}
$$

where

$$
\begin{aligned}
& P_{0}=1 /\left[\sum_{i=1}^{n} \frac{\lambda_{i}}{\mu_{i}}+\prod_{i=1}^{n} \frac{\lambda_{i}}{\mu_{i}}+\sum_{m=2}^{n-1} \sum_{\ell=\binom{n}{m}+1}^{\left.\left(\prod_{k=1}^{n} \frac{\lambda_{j, k}}{\mu_{j, k}}\right)+1\right] \text {, (4.b) }}\right. \\
& \binom{n}{m} \text { is the combinational formule } \frac{n!}{(n-m)!m!}
\end{aligned}
$$

B - Multiplex System of n-identical Components

The set of algebraic equations can be obtained by replacing λ_{i}, μ_{i} by λ, μ respectively in the transition probbility matrix to get:

$$
\begin{align*}
& 0=- \text { nd } P_{0}+\text { nu } P_{1} \text {, (one equation) } \tag{5.a}\\
& 0=\lambda P_{0}-[(n-1) \lambda+\mu] P_{j}+(n-1) \mu P_{n+1},(n-q u a t i o n s)(5 . b) \\
& j=1,2,3, \ldots, n \\
& 0=m \lambda P_{j-1}-[(n-m) \lambda+m \mu] P_{j}+(n-m) \mu P_{\ell} \cdot\left(2^{n}-(n+1) \text { equations }\right)(5 \cdot c) \\
& a=2,3, \ldots, n \\
& j=\left[\sum_{i=1}^{-1}\binom{n}{i}\right]+1 \\
& \mathcal{L}=\left[\sum_{i=1}^{\sum_{i}}\left(\begin{array}{l}
\mathrm{I}
\end{array}\right)\right]+1
\end{align*}
$$

Steady state of availability.......

$$
\begin{align*}
& \text { where } \\
& \qquad P_{j}=P_{j+1}=\ldots=P_{k} ; \quad k=\sum_{i=1}^{m}\binom{n}{i} \\
& \text { In this case, the solutions are : } \\
& \qquad P_{j}=\left(\frac{\lambda}{\mu}\right) P_{o}, \\
& \text { and } \tag{6.a}\\
& \qquad P_{j}=\left(\frac{\lambda}{\mu}\right)^{m} P_{o}, m=2,3, \ldots, n ; j=\left[\sum_{i=1}^{m-1}\binom{n}{i}\right]+1, \ldots, \sum_{i=1}^{m}\binom{n}{i} \\
& \text { where } \tag{6.b}\\
& \qquad P_{0}=\frac{1}{n} \sum_{i=0}^{n}\binom{n}{i}\left(\frac{\lambda}{\mu}\right)^{i}
\end{align*}
$$

C. Availability Formulae For Some Configurations:

C. 1. Multiplex system of four unidentical components

One must define 2^{4} states s_{i}, $i=0,1,2, \ldots \ldots \ldots \ldots, 15$ over a large long period of time to fully describe all the component configurations associated with 4 element systems, the 16 states are :

$$
\begin{aligned}
& s_{0}=x_{1} x_{2} x_{3} x_{4}, s_{1}=\bar{x}_{1} x_{2} x_{3} x_{4}, s_{2}=x_{1} \bar{x}_{2} x_{3} x_{4}, s_{3}=x_{1} \dot{x}_{2} \bar{x}_{3} x_{4} \\
& s_{4}=x_{1} x_{2} x_{3} \bar{x}_{4}, s_{5}=\bar{x}_{1} \bar{x}_{2} x_{3} x_{4}, s_{6}=\bar{x}_{1} x_{2} \bar{x}_{3} x_{4}, s_{7}=\bar{x}_{1} x_{2} x_{3} \bar{x}_{4} \\
& s_{8}=x_{1} \bar{x}_{2} \bar{x}_{3} x_{4}, s_{9}=x_{1} \bar{x}_{2} x_{3} \bar{x}_{4}, s_{10}=\bar{x}_{1} x_{2} \bar{x}_{3} \bar{x}_{4}, s_{11}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} x_{4} \\
& s_{12}=\bar{x}_{1} \bar{x}_{2} x_{3} \bar{x}_{4}, s_{13}=\bar{x}_{1} x_{2} \bar{x}_{3} \bar{x}_{4}, s_{14}=x_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4}, s_{15}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4}
\end{aligned}
$$

The system of 2^{4} algebraic equations can be found from equations $(3, a)$ -
(3,c) Where nm4 en :

Abdel-Mohsen M. Metwally et. al.,

$$
\begin{align*}
& 0=-\left(\sum_{i=1}^{4} \lambda_{i}\right) p_{0}+\sum_{i=1}^{4} \mu_{i} p_{i} \tag{7.1}\\
& \left.0=\lambda_{1} p_{1}-\sum_{i-2}^{4} \lambda_{1}+\mu_{1}\right) p_{1}+\mu_{2} p_{5}+\mu_{3} p_{6}+\mu_{4} p_{7} \tag{7.2}\\
& 0=\lambda_{2} p_{0}-\left(\sum_{i=1}^{4} \lambda_{i}-\lambda_{2}+\mu_{2}\right) p_{2}+\mu_{1} p_{5}+\mu_{3} p_{8}+\mu_{4} p_{9} \tag{7.3}\\
& 0=\lambda_{3} p_{0}-\left(\sum_{i=1}^{3} \lambda_{i}-\lambda_{3}+\mu_{3}\right) p_{3}+\mu_{1} p_{6}+\mu_{2} p_{8}+\mu_{4} p_{10} \tag{7,4}\\
& 0=\lambda_{4} p_{0}-\left(\sum_{i=1} \lambda_{i}-\mu_{4}\right) p_{4}+\mu_{1} p_{7}+\mu_{2} p_{9}+\mu_{3} p_{10} \tag{7.5}\\
& 0=\lambda_{1} p_{2}+\lambda_{2} p_{1}-\left(\lambda_{3}+\lambda_{4}+\mu_{1}+\mu_{2}\right) p_{5}+\mu_{3} p_{11}+\mu_{4} p_{12} \tag{7.6}\\
& 0=\lambda_{1} p_{3}+\lambda_{3} p_{1}-\left(\lambda_{2}+\lambda_{4}+\mu_{1}+\mu_{3}\right) p_{6}+\mu_{2} p_{11}+\mu_{4} p_{13} \tag{7.7}\\
& 0=\lambda_{1} p_{4}+\lambda_{4} p_{1}-\left(\lambda_{2}+\lambda_{3}+\mu_{1}+\mu_{4}\right) p_{7}+\mu_{2} p_{12}+\mu_{3} p_{13} \tag{7.8}\\
& 0=\lambda_{2} p_{3}+\lambda_{3} p_{2}-\left(\lambda_{1}+\lambda_{4}+\mu_{2}+\mu_{3}\right) p_{8}+\mu_{1} p_{11}+\mu_{4} p_{14} \tag{7.9}\\
& 0=\lambda_{2} p_{4}+\lambda_{4} p_{2}-\left(\lambda_{1}+\lambda_{3}+\mu_{2}+\mu_{4}\right) p_{9}+\mu_{1} p_{12}+\mu_{3} p_{14} \tag{7.10}\\
& 0=\lambda_{3} p_{4}+\lambda_{4} p_{3}-\left(\lambda_{1}+\lambda_{2}+\mu_{3}+\mu_{4}\right) p_{10}+\mu_{1} p_{13}+\mu_{2} p_{14} \tag{7.11}\\
& 0=\lambda_{1} p_{8}+\lambda_{2} p_{6}+\lambda_{3} p_{5}-\left(\lambda_{4}+\mu_{1}+\mu_{2}+\mu_{3}\right) p_{11}+\mu_{4} p_{15} \tag{7.12}\\
& 0=\lambda_{1} p_{9}+\lambda_{2} p_{7}+\lambda_{4} p_{5}-\left(\lambda_{3}+\mu_{1}+\mu_{2}+\mu_{4}\right) p_{12}+\mu_{3} p_{15} \tag{7.13}\\
& 0=\lambda_{1} p_{10}+\lambda_{3} p_{7}+\lambda_{4} p_{6}-\left(\lambda_{2}+\mu_{1}+\mu_{3}+\mu_{4}\right) p_{13}+\mu_{2} p_{15} \tag{7.14}\\
& 0=p_{13}+\lambda_{3} p_{12}+\lambda_{4} p_{11}-\left(\sum_{i=1} \mu_{i}\right) p_{15} \tag{7.15}\\
& 0=p_{9}+\lambda_{4} p_{8}-\left(\lambda_{1}+\mu_{2}+\mu_{3}+\mu_{4}\right) p_{14}+\mu_{1} p_{15} \tag{7.16}\\
& 0
\end{align*}
$$

$$
\begin{equation*}
I=\sum_{j=0}^{15} P_{j} \tag{7.17}
\end{equation*}
$$

Steady state of availability.
The soiution of this system of equations gives the following state probabilities:

$$
\begin{align*}
& P_{0}=1 /\left[\sum_{i=1}^{4} \frac{\lambda_{i}}{\mu_{i}}+\prod_{i=1}^{4} \frac{\lambda_{i}}{\mu_{i}}+\left(\frac{\lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2}}+\frac{\lambda_{1} \lambda_{3}}{\mu_{1} \mu_{3}}+\frac{\lambda_{1} \lambda_{4}}{\mu_{1} \mu_{4}}+\frac{\lambda_{2} \lambda_{3}}{\mu_{2} \mu_{3}}+\frac{\lambda_{2} \lambda_{4}}{\mu_{2} \mu_{4}}+\right.\right. \\
& \left.+\frac{\lambda_{3} \lambda_{4}}{\mu_{3} \mu_{4}}+\frac{\lambda_{1} \lambda_{2} \lambda_{3}}{\mu_{1} \mu_{2} \mu_{3}}+\frac{\lambda_{1} \lambda_{2} \lambda_{4}}{\mu_{1} \mu_{2} \mu_{4}}+\frac{\lambda_{1} \lambda_{3} \lambda_{4}}{\mu_{1} \mu_{3} \mu_{4}}+\frac{\lambda_{2} \lambda_{3} \lambda_{4}}{\mu_{2} \mu_{3} \mu_{4}}\right)+11 \tag{8.a}\\
& P_{j}=\frac{\lambda_{j}}{\mu_{j}} P_{o} \tag{8.b}\\
& \text {, } j=1,2,3,4 \\
& P_{j}=\frac{\lambda_{1} \lambda_{k}}{\mu_{1} \mu_{k}} P_{o} \quad, j=5,6,7 ; k=2,3,4 \text { respectively } \tag{8.c}\\
& p_{j}=\frac{\lambda_{2} \lambda_{k}}{\mu_{2} \mu_{k}} P_{0} \quad, j=8,9 \quad ; k=3,4 \text { respectively } \tag{8.d}\\
& P_{10}=\frac{\lambda_{3} \lambda_{4}}{\mu_{3} \mu_{4}} P_{0} \tag{8.e}\\
& P_{j}=\frac{\lambda_{1} \lambda_{k} \lambda_{k+1}}{\mu_{1} \mu_{k} \mu_{k+1}} P_{o}, \quad j=11,12 ; k=2,3 \text { respectively (8.6) } \\
& P_{13}=\frac{\lambda_{1} \lambda_{2} \lambda_{4}}{\mu_{1} \mu_{2} \mu_{4}} P_{0}, P_{14}=\frac{\lambda_{2} \lambda_{3} \lambda_{4}}{\mu_{2} \mu_{3} \mu_{4}} P_{o}, \quad P_{15}=\left[\prod_{i=1}^{4} \frac{\lambda_{i}}{\mu_{i}}\right] P_{o} \text { (8.g) }
\end{align*}
$$

The avauability tormulae depends on the configuration of the system.
The following are some selected configurations :
(a)

$$
A(\infty)=P_{0}
$$

(b)

$A(\infty)=P_{0}+P_{2}+P_{3}+P_{4}+P_{8}$
(i)

$$
A(\infty)=P_{0}+P_{2}+P_{3}+P_{4}+P_{8}+P_{9}+P_{10}
$$

Abdel-Mohsen-M. Metwally et. al.,

C.2. Multiplex systm 10 -identical components

The system of 2^{10} algebraic equations can be found from equations (6.a)-(6.b) when $n=10$ as :

$$
\begin{align*}
& 0=-10 \lambda p_{0}+10 u p_{1} \tag{9.1}\\
& 0=\lambda p_{o}-[9 \lambda+\mu] p_{j}+9 u p_{11}, \quad j=1,2, \ldots, 10 \quad ; \tag{9.2}\\
& 0=2 \lambda p_{10}-[8 \lambda+2 u] p_{j}+8 u p_{56}, \quad j=11,12, \ldots, 55 \tag{9.3}\\
& 0=3 \lambda p_{55}-[7 \lambda+3 \mu] p_{j}+7 \mu p_{176}, \quad j=56,57, \ldots, 175 \tag{9.4}\\
& 0=4 \lambda p_{175}-[6 \lambda+4 \mu] p_{j}+6 \mu p_{386}, \quad j=176,177, \ldots, 385 \tag{9.5}\\
& o=5 \lambda p_{385}-[5 \lambda+5 \mu] p_{j}+5 \mu p_{638}, \quad j=386,387, \ldots, 637 \tag{9.6}\\
& 0=6 \lambda p_{637}-4[4 \lambda+6 \mu] p_{j}+4 \mu p_{848}, \quad j=638,639, \ldots, 847 \tag{0.7}\\
& 0=7 \lambda p_{847}-[3 \lambda+7 U] p_{j}+3 u p_{968}, \quad j=848,849, \ldots, 967 \tag{9.8}\\
& 0=8 \lambda p_{967}-[2 \lambda+8 \mu] p_{j}+2 u p_{1013}, \quad j=968,969, \ldots, 1012 \tag{9.9}\\
& 0=9 \lambda p_{1012}-[\lambda+9 \mu] p_{j}+\mu p_{1023}, \quad j=1013,1014, \ldots, 1022 \tag{9.10}\\
& 0=10 \lambda p_{1022}-i O_{1} \cdot p_{1023} \tag{9.11}\\
& \text { and, from (1) we get }
\end{align*}
$$

$$
\begin{equation*}
I=\sum_{j=0}^{1023} p_{j} . \tag{9.12}
\end{equation*}
$$

The solution of this system of equations gives the following state probablities are:

Steady state of availability........

$$
\begin{equation*}
P_{0}=\frac{10}{\sum_{i=0}\binom{10}{i}(\lambda / \mu)^{i}} \tag{10.a}
\end{equation*}
$$

$$
\begin{equation*}
p_{j}=(\lambda / u) p_{0}, \quad j=1,2, \ldots, 10 \tag{10.b}
\end{equation*}
$$

$$
\begin{equation*}
p_{j}=(\lambda / \mu)^{m} p_{o}, \tag{10.c}
\end{equation*}
$$

$$
\mathrm{m}=2.3, \ldots{ }^{10}
$$

$$
p_{j}=p_{j+1}=\ldots=p_{k},
$$

$$
j=\left[\sum_{i=1}^{m-1}\binom{10}{i}\right]+1
$$

$$
\begin{equation*}
k=\sum_{i=1}^{m}\binom{10}{i} \tag{10.d}
\end{equation*}
$$

Shown below the availability formulae for some selecated configurations
(a)

(b)

$$
A(\infty)=P_{0}+8 P_{1}+20 P_{11}+16 P_{56}+4 P_{176}
$$

(c)

$$
\begin{aligned}
A(\infty) & =P_{0}+9 P_{1}+34 P_{11}+70 P_{56}+82 P_{176}+51 P_{386} \\
& +12 P_{638}
\end{aligned}
$$

Abdel-Mohsen M. Metwally et. al.,
5 -The Utilization Factor (μ / λ)

The steady state availability is strongly affected by the ratio (μ / λ) which is commonly termed as "utilization factor", some references refer the inverse of that ratio as "Operability ratio" .

Figure (1) shows how $A(\infty)$ varies with the urilization factor of the critical component $\mathrm{x}_{1}\left(\mu_{1} \lambda_{\mathrm{I}}\right)$ keeping other factors constant, for the three configurations of 4 -unidentical component system presenied in section (C.1.).

The same effect was studied for the configurations of 10 -identical component system provided in section (C.2). The improvement in $A(\infty)$ as (μ / λ) increases is shown in Figure(2).

Steady state of availability....

Pigure (1) 1 Rffect of eritical component utilization factor on $h(\infty)$ response for different configurations,

Figure (2): Improvement in $\Lambda(\infty)$ of 10-identecal components responge for different - ilyuratiois.

Abdel-Mohsen M. Metwally et. al.,

REFERANCES

[1] Nancy R. Mann et al; "Methods for Statistical Analysis of Reliability and Life Data", John Wiley \& Sons Inc., 1974.
[2] Richard Guild, and Edmond-Tourigny, "Reliability, Reliability with repair, and Availability of Four Identical Element Multiplex Systems", Nuclear Technology, Vol. 41, 1978 Nov.
[3] Danny Dyer; "Unification of Reliability/Availability/ Repairability Models for Markov System", IEEE Trans. Reliability, Vol. 38, No. 2, 1989 June.
[4] K.C. Kapur and L.R. Lamberson; "Reliability in Engineering Design", John Wiley \& Sons Inc. New York, 1977.

Steady state of ávaitability........

المتاحية ألنهائية للخلنظمة المخاعقة
 أ.د. عبد المحسن متولىى ، أ.د. محمد عـر شاكر

فى معظم النتطبيقات العملية تككن مكونات الأنظمة المشاعفيَ غير متمائلت . ويتلم

 التشكـيلات الهنلدسية وإتنباط تيالين المتاحية النهائية لهيا

