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Abstract

Control charts are widely used tools for monitoring process behavior. However, for high-quality
processes, using traditional Shewhart control charts is not appropriate. Thus, several types of control charts have
been established for monitoring high-quality processes based on the Exponential and Weibull distributions.
These charts were later adopted for reliability monitoring. So far, these charts have been dedicated for
monitoring the reliability of binary-state systems, which have only two levels of performance—functioning or
failed. On the other hand, multi-state systems exhibit different levels of performance. This paper introduces two
new types of control charts for monitoring the reliability of multi-state systems. Both types monitor can monitor
different state transitions with different rates using the same control limits. The first type is the Angular Limits
Control (ALC) chart. The ALC chart depicts different system-state distinctively but with the same probability
control limits. To achieve this, the chart uses probability control limits with different angles of inclination. The
second type is the Transformed Exponential Control (TEC) chart. The TEC chart uses a transformed form of the
Exponential distribution as a model for the time to fail.
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Abbreviations and nomenclature

ALC: : Angular Limits Control A : Failure rate

CDF: : Cumulative Distribution Function t : Time to fail

CcQcC : Cumulative Quantity Control c : False alarm probability
CUMSUM |: Cumulative Sum 0y : Upper control limit angle
EWMA : Exponentially Weighted Moving Average 0 : Cenyral line angle

MTTF: : Mean Time to Failure 0, : Lower control limit angle
PDF : Probability Distribution Function CCL |[: Central Control Limit
TEC: : Transformed Exponential Control LCL |: Lower Control Limit

SS: : System State UCL |: Upper Control Limit
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1. Introduction

1.1. Reliability Monitoring

Statistical process control charts are
widely used tools for monitoring process
behavior. However, for high-quality
processes, where defect rate is low,
traditional Shewhart control charts cease to
be adequate. They encounter several
problems, such as: high probability of
generating false alarms, inability to detect
change in  process  characteristics,
unnecessary plotting of many zero points,
meaningless upper and lower control limits,
etc. That is because the frequency
distribution of the occurrence of defects in
high-quality processes is heavily skewed
and cannot be adequately approximated to
the normal distribution [1, 2].

To overcome these inadequacies,
Chan et al. (2000) (cited in [3]) introduced
the CQC- (Cumulative Quantity Control)
and CQC,-charts to monitor high-quality
processes. The CQC-chart observes a
certain quantity (e.g. time) between the
occurrences of two events (e.g. defects),
and uses probability limits instead of the
traditional three-sigma limits. Similarly,
CQC,-charts observe a quantity between the
occurrences of r events. In high-quality
processes, the occurrence of a defect is
commonly modeled as a homogenous
Poisson process. Thus, the time observed
between the occurrence of two defects
follows an Exponential distribution [4].

Based on the CQC- and CQC,-charts,
Xie et al. [5] proposed the use of t- and t,-
charts for monitoring reliability. The t-
charts monitors the time until r failures are
observed. The Exponential, two-parameter
Weibull, and Erlang distributions were used
to model the time to fail in the t- and t,-
charts. However, any statistical distribution
for positive variables can be used as a
model for the time fail [2].

Other chart types were used to
monitor the time between the occurrence of
events, most common of them are the
Exponential EWMA (Exponentially
Weighted Moving Average) chart and the
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Exponential CUMSUM (Cumulative Sum)
chart [1, 3].

CQC- and CQC,-charts are simple in
design and easy to employ. They are more
effective than Exponential EWMA and

Exponential CUMSUM charts when
process  shifts are large  and/or
unpredictable. ~ However,  Exponential

EWMA and Exponential CUMSUM charts
outperform CQC- and CQC,-charts in case
of small and moderate process shifts, and/or
when these shifts can be accurately
predicted [3, 4, 6].

1.2. Multi-State Systems Reliability

Traditional reliability theory deals
with systems in a binary way—functioning
or failed. However, for many applications
this classification is oversimplified and not
sufficient. Many systems exhibit several
levels of efficiency ranging from perfect
functioning to complete failure. These
varying levels of efficiency are called
‘performance rates’ or ‘system states’. A
system that can have a finite number of
performance rates/system states is called a
multi-state system [7, 8].

Since the introduction of multi-state
reliability theory in the 1970s, numerous
research studies have been devoted to the
subject. Fields of research in multi-state
reliability include: reliability assessment
and evaluation, reliability optimization, and
maintenance planning [9]. However, using
control charts for monitoring the reliability
of multi-state systems has not been
addressed in literature.

2. Control Charts for Multi-
State Systems

The main problem with monitoring
the time to fail for multi-state systems is
that the system could have different failure
rates corresponding to different states. This
paper introduces two new types of control
charts for monitoring the reliability of
multi-state systems. Both charts monitor
exponentially distributed time to fail; using
the same control limits for different system
states. These charts are based on the t-charts
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established by Xie et al. [5]. The probability
control limits are calculated from the
inverse cumulative distribution function
(CDF) of the Exponential distribution.

) = oD @
3. Angular Limits Control
Chart

The Angular Limits Control (ALC)
chart uses control limits with different
angles of inclinations. In order to give a
good overall view of the system’s behavior,
this control chart depicts each system state
(SS) distinctively.

In the ALC chart, the observed time to
fail is measured on the horizontal axis. The
vertical axis represents the mean time to fail
(MTTF). Each SS is represented by a
horizontal line crossing the vertical axis at
the SS’s MTTF.

Each observation point is depicted
by a ray irradiating from the origin point.
The end point of the ray rests on the line
representing the observation’s SS; and the
projected horizontal distance represents the
observed time to fail, t. Then, angle of
inclination (see Figure 1) of any
observation ray is

) (2

3.1. Control Limits of ALC chart

The angle of inclination equation
(Equation 2) can be applied to the
probability control limits of the Exponential
distribution (Equation 1) in order to
determine the angles of inclination for the
upper, central, and lower control limits—
Ou, Oc, and 6y, respectively. The false alarm
probability, c, represents the acceptable
probability of misdetection. The control
limits’ angles of inclination are

6, = atan (ﬁ) = atan <ﬁ) 3)

_ 1 _ 1) _ 014l
6, = atan (ur—l(%)) = atan (ln(Z)) =55°16 (€))

0= atan(

0, = atan (m) = atan (@) 5)

Equations 3-5 show that the control
limits’ angles of inclination do not depend
on any of the failure rates. They depend
only on the value of the false alarm
probability, which is traditionally set to be
0.27%. Thus, a mulita-state system with
differing failure rates will have the same
control limits.

3.2. An lllustrative Example

The procedure of using the ALC chart
will be illustrated using an example. Table
1 shows simulated times to fail, t, for 60
observation points for a multi-state system
with three states (other than the perfect-
functioning state): SS1, SS2, and SS3. The
first 30 points is simulated, based on the
Exponential distribution, with MTTFs of
1500, 3000, and 6000 hour, respectively.
To depict process shifts, the next 30 points
are simulated with the MTTFs of both SS1
and SS2 changed to 3000 hour.

The value false alarm probability is
used as ¢ = 0.0027, corresponding with the
traditional three-sigma range. Equations 3
and 4 are used to calculate the angles of
inclination for the upper and lower
probability control limits.

-1

Oy = atan (ln(1.35 x 10-3)

) =8°36’

0, = atan( = 89°55’

-1
ln(0.9987))

The data in Table 1 is plotted on an
ALC chart in Figure 1. The chart detects
out-of-control points in the case of SSI,
which indicates an increase in the MTTF
and possible improvement in this state. But
it fails to detect the decrease in the MTTF
for SS3.
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Table 1. Time to fail for a multi-state system.
No.| SS | t(hr) | No. | SS t (hr.) No. SS t(r) | No. | SS t (hr.)
1 1 1255.7 16 1 2378.5 31 2 112.5 46 1 93.9
2 11 619.5 17 | 1 917.0 32 3 6639.5 | 47 | 3 1383.9
3 2 1976.1 18 3 26.9 33 2 516.2 48 1 684.2
4 1 1159.7 19 1 1781.7 34 3 22404 | 49 3 2742.9
5 1 66.2 20 1 682.5 35 1 6545.0 50 1 4285.5
6 3 8021.1 21 1 1070.2 36 1 801.0 51 2 3216.1
7 2 218.3 22 1 4854.7 37 2 5429.9 52 1 3930.4
8 1 9.0 23 1 729.1 38 2 3903.6 53 1 10845.4
9 2 1911.7 24 2 4736.8 39 2 304.0 54 1 7353.6
10| 2 6226.4 25 2 3870.9 40 2 573.4 55 3 1532.2
11| 1 3114 26 1 2929.9 41 1 9210.3 56 2 794.3
12] 1 219.1 27 1 48.6 42 2 494.9 57 3 1644.2
13] 1 3843.6 28 1 1162.9 43 1 693.6 58 2 3900.5
14| 1 2355.3 29 2 2602.6 44 1 31034 | 59 2 2885.3
15| 2 5381 | 30 | 1 262.9 45 3 21840 | 60 | 1 | 13303.2
Observed Time to Fail (1)
Fig. 1. ALC chart for the data in Table 1.
3.3. Properties of the ALC Chart Since the central control limit (CCL)

In the ALC chart, an observation
point with an angle of inclination & less
than 6y, is an out-of-control point that
represents a decrease in the failure rate; an
indication of possible system
improvement. Similarly, an observation
point with angle of inclination & greater
than 6., is an out-of-control point that
represents an increase in the failure rate; an
indication of possible system deterioration.

represents the median of the data, then, if a
system is in control, approximately 50% of
the points will have angles of inclinations
that are greater than y, and the other 50%
of the points will have angles of
inclinations that are less than 6y. This is
true for the overall observation points, as
well as the observation points for each
system state separately.
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The SS lines in the ALC chart are
arranged ascendingly according to their
MTTFs. And since events with higher
failure rates will occur more frequently,
lower SS lines should have more
observation points than higher SS lines, if
the system is in a state of control.

Figure 1 shows that the lower control
limit nearly coincides with the vertical
axis, which would make it difficult to
detect points with & > 6. To overcome
this, the chart can be extended in the same
manner as the t,-charts to monitor the time

until r failures. In this case, the control
limits’ angles of inclination will be
calculated using the Erlang distribution as
a model for the time until r failures. This
will also increase the overall sensitivity of
the ALC chart.

The main drawback of the ALC chart
is that it fails to clearly illustrate the timely
sequence of failure events. As a solution,
the sequence of each observation point
could be written above it, as in Figure 2
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Fig. 2. ALC chart with numbered observations.

4. Transformed Exponential
Control Chart

In the Transformed Exponential
Control (TEC) chart, a transformed form
of the Exponential distribution is used to
model the time to fail. Using this
transformed form of the Exponential
distribution allows for modeling different
state transitions with different failure rates
using the same distribution. Thus, in the
TEC chart different failure rates will have
the same probability control limits.

4.1. Transformed Exponential

Distribution

If a random wvariable T s
exponentially distributed with a rate
parameter of /1, then the probability
distribution function (PDF) of T is

fr(t) = e, t>0 (6)

Consider a dimensionless random variable,
U, that is defined as the ratio between the
observed time to fail, t, and the mean time
to fail, MTTF. This random variable will
be used to transform the PDF of the
Exponential distribution. Based on the
definition of the random variable U, the
transformation and inverse transformation
functions, respectively, are

At )]

t
w® = 3rpF =

t(u) = % (8)

Applying Equation 7 on the limits of
the Exponential distribution (0 < t < ),
gives the limits of the new distribution,
which are also 0 < u < . The PDF of the
new random variable U is derived from
Equations 6-8 as
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Fo) = fr(t) o= (2e75) % (3) pw =, w
>0 9

Figure 3 show the PDF of the
original Exponential distribution versus the
PDF of the transformed exponential
distribution for A = 0.5 and 1.5. If 1 = 1,
then the two PDFs will coincide with each
other.
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The PDF of the random variable U in
Equation 9 is the transformed form of the
Exponential distribution. For the random
variable U, the CDF and inverse CDF,
respectively, are
Fy(uw) = f(:‘e"‘ dx
Fy(uy=1—-e™ u=0 (10)
Fy'(p)=—-In(1-p), 0<sp<1 (11)

L=05

Fig. 3. PDFs of the random variables T and U for 4 = 0.5 andl1.5

4.2. Control Limits of TEC chart

Based on the inverse CDF of the
transformed  Exponential  distribution
(Equation 11), the probability control
limits of the TEC chart are

veL=6"(1- %) =—In (%) (12)
cCL=G" (%) =—In (%) =0.693 (13)
LCL = G (%) =-mn(1 —%) (14)

Equations 12-14 show that the values
of the probability control limits depend
only on the value of the false alarm
probability, and not on any of the failure
rates. To distinguish between different
system-states, the state’s number can be
written above each observation point

4.3. An lllustrative Example

The data in Table 1 is used to
illustrate the procedure of using the TEC
chart. For a false alarm probability of ¢ =
0.0027, Equations 12 and 14 are used to
calculate values of the upper and lower
probability control limits.

-1

0, = at (7
v A (1,35 x 109)

) = 8°36’

0, = atan( ) = 89°55’

-1
In(0.9987)

The data in Table 1 are plotted on a
TEC chart in Figure 5. The chart detects
the process shift in SS1 in the second part
(the last 30 points) as most of the SS1
observation points are above the CCL line
and are some are out-of-control (above
UCL). This indicates an increase in the
MTTF and possible system improvement.
The process shift in SS3 can also be
detected as nearly all the SS3 observation
points in the second part (the last 30
points) are below the CCL line. This
indicates a decrease in the MTTF and
possible system deterioration
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Fig. 4. TEC chart for the data in Table 1.

5. Conclusions

Several statistical control charts have
been used to monitor the reliability of
binary-state systems. For many
applications, the binary view of systems is
oversimplified and insufficient. This is
why multi-state system reliability theory
has been established. However, the subject
of monitoring the reliability of such
systems has not been addressed in
literature.

This paper introduces two new types
of control charts for monitoring the
reliability of multi-state systems: the ALC
chart and the TEC chart. These charts use
the same control limits for different failure
rates.

Angular control limits are used to
establish the ALC chart. This chart is
useful in giving a distinctive view of
different system states’ behaviors. A
transformed Exponential distribution is
used to establish the TEC chart. This form
allows for modeling different state
transitions with different failure using the
same distribution. The TEC chart gives
better results in detecting process shifts.
This is due to the absence of the timely
sequence of observations in the ALC chart.
The two charts can be used jointly to give a
better overall view of the system behavior.

Future work can be directed to
adapting the ALC and TEC charts into
other statistical distributions other than the
Exponential (e.g. Weibull distribution).
This will help to widen their range of
applications. The ALC chart can be also
extended in the same manner as the t,-
charts to monitor the time until r failures.
This will increase the chart’s ability and

sensitivity ~ for detecting system
degradation.
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